
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
U.S. MARINE SPECIFIC

SOFTWARE INTEROPERABILITY REQUIREMENTS
OF THE AFATDS AND IOS SOFTWARE SUITES

by

Geoffrey D. Thome

September 2002

 Co-Advisor: John Osmundson
 Co-Advisor: Richard Riehle

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: U.S. Marine Specific Software Interoperability
Requirements of the AFATDS and IOS Software Suites

6. AUTHOR(S) Geoffrey D. Thome

5. FUNDING NUMBERS
M9545002WRR2AMC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Marine Corps Systems Command
PG MAGTF C4ISR PMM 121 Ground C2
2033 Barnett Ave, Suite 315
Quantico, VA 22134-5010

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The Marine Corps has several Tactical Combat Systems at the Infantry Division level and below. The Information-
Operations Server Version 1 (IOS v. 1) is a command and control (C2) system with a client-server architecture that when
networked offers the Common Operational Picture (COP). The client is called Command and Control Personal Computer
(C2PC). IOS was designed primarily to support maneuver, and has its roots in the Navy’s Joint Maritime Command
Information System (JMCIS). C2PC has been fielded to all Battalion and Squadron level and higher units in the Marine Corps,
while IOS resides in Regimental and higher units.

The Advanced Field Artillery Tactical Data System (AFATDS), originally designed by the Army, is the Marine fire
support C2 System of Record. Current AFATDS software is tightly coupled to a particular hardware platform. AFATDS is
currently being fielded to all units in the Fleet Marine forces.

There are several problems with having two stand-alone C2 systems inside the same Combat Operations Center
(COC). Among the most pressing problems is the inability for fires to support maneuver without tedious and dangerous
manual conversion of data between systems. This thesis explores the software requirements for tactical systems integration of
AFATDS and IOS.

15. NUMBER OF
PAGES 151

14. SUBJECT TERMS
Command and Control, Tactical C2 Systems, AFATDS, IOS, Intelligence-Operations Server,
interoperability

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited.

U.S. MARINE SPECIFIC
SOFTWARE INTEROPERABILITY REQUIREMENTS

OF THE AFATDS AND IOS SOFTWARE SUITES

Geoffrey D. Thome
Major, United States Marine Corps
B.A., University of Colorado, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTERS OF SCIENCE IN
INFORMATION TECHNOLOGY MANAGEMENT

And
SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2002

Author: Geoffrey D. Thome

Approved by: Professor John Osmundson

Co-Advisor

Professor Richard Riehle
Co-Advisor

Wayne Hughes
Dean, Graduate School of Operations and Information Sciences

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

The Marine Corps has several Tactical Combat Systems at the Infantry Division

level and below. The Information-Operations Server Version 1 (IOS v. 1) is a command

and control (C2) system with a client-server architecture that when networked offers the

Common Operational Picture (COP). The client is called Command and Control

Personal Computer (C2PC). IOS was designed primarily to support maneuver, and has

its roots in the Navy’s Joint Maritime Command Information System (JMCIS). C2PC

has been fielded to all Battalion and Squadron level and higher units in the Marine Corps,

while IOS resides in Regimental and higher units.

The Advanced Field Artillery Tactical Data System (AFATDS), originally

designed by the Army, is the Marine fire support C2 System of Record. Current

AFATDS software is tightly coupled to a particular hardware platform. AFATDS is

currently being fielded to all units in the Fleet Marine forces.

There are several problems with having two stand-alone C2 systems inside the

same Combat Operations Center (COC). Among the most pressing problems is the

inability for fires to support maneuver without tedious and dangerous manual conversion

of data between systems. This thesis explores the software requirements for tactical

systems integration of AFATDS and IOS.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. PURPOSE .. 1
B. BACKGROUND.. 1
C. RESEARCH QUESTIONS .. 3
D. SCOPE.. 3
E. METHODOLOGY.. 4

1. Research Methodology.. 4
2. Interoperability Analysis Methodology... 5

F. ORGANIZATION... 5
G. BENEFITS OF THE STUDY... 6

II. MARINE CORPS AUTOMATED TACTICAL COMMAND AND
CONTROL... 7
A. WHAT IS COMMAND AND CONTROL (C2)?... 7

1. Nature of C2... 7
2. People.. 8
3. Information .. 9
4. Support... 11
5. What Makes Effective C2 ... 12

a. Command.. 12
b. Control .. 12

B. C2 AT THE STRATEGIC AND OPERATIONAL LEVELS OF
WAR ... 13
1. DoD Strategic and Operational Processes 13
2. Systems ... 14

C. FACTORS AFFECTING TACTICAL C2 ... 15
1. USMC Maneuver Warfare Doctrine ... 15
2. Implications of Combined Arms Concepts for C2 16
3. Effects of Weapons Technology on C2 .. 16

D. BENEFITS OF AUTOMATED C2 SYSTEMS.. 17
E. USMC C2 SYSTEM ARCHITECTURES.. 19

1. Marine Corps View of Systems Architecture 19
2. Problems with the USMC’s Systems Architecture and

Acquisition ... 21
a. Cultural Inertia... 21
b. USMC as System Buyer ... 22
c. Stovepiped and Overlapping Development Efforts 23
d. USMC Seen as a Bit Player Among Competing Interests 24
e. Software Project Management Challenges 24

F. CURRENT C2 DEVELOPMENT ENVIRONMENT............................... 25
1. Overview .. 25

 vii

2. DISA ... 26
3. ASD, AT&L (Interoperability) .. 27
4. GIG COE ... 27
5. JROC.. 29
6. SPAWAR Charleston.. 30

III. THE UNIFIED MODELING LANGUAGE... 33
A. INTRODUCTION... 33

1. Object Orientation .. 34
2. Advantages of UML .. 35
3. Why UML is Useful for this Project .. 36

B. USE CASES ... 36
1. Actors.. 37
2. Classes .. 38

C. COLLABORATIONS... 39
D. CONCLUSION.. 41

IV. THE INTELLIGENCE – OPERATIONS SERVER (IOS)
SOFTWARE SUITE... 43
A. HISTORY .. 43

1. Introduction ... 43
2. The Maritime Command and Control Environment..................... 43
3. Joint Maritime Command Information System (JMCIS)............. 45
4. Tactical Combat Operations (TCO).. 47
5. Intelligence-Operations Server (IOS).. 49

B. OPERATIONAL REQUIREMENTS ... 50
1. Selected User Requirements... 51
2. Actors.. 52
3. Essential Use Cases.. 53
4. COP Network... 56
5. Derived IOS Classes .. 58
6. Interoperability Requirements... 60

C. IOS IMPEMENTATION ISSUES... 61
1. Software Development .. 61
2. Support to the Fleet Marine Forces... 62
3. Future Capabilities.. 62

V. THE ADVANCED FIELD ARTILLERY TACTICAL DATA
SYSTEM (AFATDS)... 65
A. HISTORY .. 65

1. The Gunnery Problem .. 65
2. Field Artillery Digital Automatic Computer (FADAC)................. 66
3. TACFIRE... 67
4. BCS/LTACFIRE/IFSAS... 68
5. AFATDS... 69

B. OPERATIONAL REQUIREMENTS ... 71
1. Selected User Requirements... 71

 viii

2. Actors.. 73
3. Essential Use Cases.. 74
4. AFATDS Network ... 81
5. Derived AFATDS Classes... 82
6. Use Case “Conduct Fire Mission” Sequence Diagram 84

C. INTEROPERABILITY REQUIREMENTS .. 86
1. Overview .. 86
2. Interface Control Documents... 87
3. DII-COE Compliance Requirements .. 87

D. AFATDS IMPLEMENTATION ISSUES... 88
1. The Master Unit List... 88
2. Current Capabilities ... 89

VI. INTEROPERABILITY REQUIREMENTS ANALYSIS 91
A. INTRODUCTION... 91
B. LISI-IMM .. 92
C. USER REQUIREMENTS .. 94

1. Requirements... 94
2. Actors.. 95
3. Provide COP .. 96
4. Use Case Conduct Fire Mission ... 98

D. THE CRITICAL INTEGRATION CHALLENGE................................. 102
1. The AFATDS MUL... 102
2. Friendly Firing Unit Versus Track.. 103
3. Unit Identification ... 103
4. COP Object Translation... 103

VII. CURRENT INITIATIVES... 105
A. FIRE SUPPORT CLIENT ... 105
B. PROXY SERVER ... 106
C. TESTING ... 106
D. FLEET SUPPORT CONTRACTORS.. 108
E. VERSION CONTROL ... 108

VIII. CONCLUSIONS.. 111
A. GENERAL ... 111
B. JOINT RECOMMENDATIONS... 112
C. MARINE CORPS RECOMMENDATIONS.. 112

1. System Architecture Management .. 112
2. MARCORSYSCOM ... 113
3. Fleet Contractors... 114
4. MCTSSA .. 114

D. RECOMMENDATIONS FOR NPS.. 115
E. THE UML AS A MODELING TOOL.. 116
F. AREAS FOR FURTHER RESEARCH .. 116

LIST OF REFERENCES ... 119

 ix

APPENDIX A. GLOSSARY ... 125

APPENDIX B. EXAMPLE MARINE ORGANIZATION FOR COMBAT 129

INITIAL DISTRIBUTION LIST .. 133

 x

LIST OF FIGURES

Figure 1. The OODA Loop (From [MCDP06, 64]) ... 9
Figure 2. The Information Hierarchy (From [MCDP06, 67]) .. 10
Figure 3. Typical COP Display (Author’s files)... 18
Figure 4. The DII COE Conceptual Model (After [WALK01, 3])................................. 28
Figure 5. Unit Tracking System.. 38
Figure 6. UML Example Class Diagram .. 39
Figure 7. UML Collaboration Diagram.. 40
Figure 8. Example Sequence Diagram ... 41
Figure 9. JMCIS Lineage (After [BUDD02])... 46
Figure 10. IOS in a tactical environment.. 49
Figure 11. IOS Essential Use Cases ... 53
Figure 12. Regimental COP Network... 57
Figure 13. IOS COP.. 58
Figure 14. IOS Track Class. ... 59
Figure 15. FADAC terminal. (From [BRLA61, 254]) .. 67
Figure 16. AFATDS Workstation (From [APIC02]) ... 71
Figure 17. AFATDS System Level Use Cases... 75
Figure 18. Example Infantry Regimental AFATDS logical Network.............................. 81
Figure 19. AFATDS OPFAC Class.. 83
Figure 20. AFATDS Provide COP ... 83
Figure 21. AFATDS Guidance Classes .. 84
Figure 22. Use Case “Conduct Fire Mission” Sequence Diagram 85
Figure 23. IOS Client Call For Fire Sequence Diagram... 101
Figure 24. Marine Artillery Battalion in Direct Support of an Infantry Regiment......... 129
Figure 25. Example Regimental COC. (After [LITT02])... 130

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

LIST OF TABLES

Table 1. “One Architecture, Three Views.” (After [MSEI02B, 4]) 20
Table 2. DII COE Levels of Compliance (After [DIRS97].) .. 29
Table 3. Pertinent C2 Projects at SPAWAR Charleston ... 31
Table 4. Unit Tracking System Requirements .. 36
Table 5. Unit Tracking System Use Case.. 37
Table 6. Selected IOS User Requirements (After [TORD95], [TCOE95]) 51
Table 7. IOS Actors... 52
Table 8. Essential Use Case Provide COP (IOS) .. 55
Table 9. Essential Use Case Command Forces (IOS) ... 56
Table 10. IOS Track types. (After [CHBK98, 24-26]). ... 60
Table 11. AFATDS User Requirements (After [FSSS00]) ... 73
Table 12. AFATDS Actors.. 74
Table 13. Essential Use Case - Provide COP (AFATDS)... 77
Table 14. Essential Use Case – Define Fire Mission Criteria. (AFATDS)..................... 79
Table 15. Essential Use Case – Conduct Fire Mission (AFATDS) 80
Table 16. LISI-IMM Attributes (After [LISI98, 2-8]). ... 93
Table 17. IOS/AFATDS Federation Actors. ... 96
Table 18. IOS Client Call for Fire Use Case... 100

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

ACKNOWLEDGMENTS

I have been fortunate to have the support of about a hundred outstanding

American military and civilian professionals, without which this thesis would not have

been possible. First, I extend my sincere appreciation to Captain Adam Kubicki, recently

departed from the AFATDS Project Office at the Marine Corps Systems Command, for

his support and his willingness to provide research funding from the AFATDS account.

Second, Professors Osmundson and Riehle provided invaluable assistance and guidance

in the development of the many process and software concepts contained herein. Third,

Lieutenant Colonel Stan Watkins, USMC (Ret) provided critical input on the rough draft,

ensuring that history was properly recorded and future concepts were accurately

described. Finally, I would like to thank my wife AnneMarie, for her patience and

understanding throughout this research effort. What errors are contained in this

document are purely mine.

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

I. INTRODUCTION

A. PURPOSE

Interoperability is defined as:

The ability of systems, units or forces to provide data, information,
materiel, and services to and accept the same from other systems, units, or
forces and to use the data, information, materiel, and services so
exchanged to enable them to operate effectively together. IT
interoperability includes both the technical exchange of information and
the end-to-end operational effectiveness of that exchange of information
as required for mission accomplishment. [DODD02, 13]

The purpose of this thesis is to investigate some of the reasons why Command

and Control Systems interoperability is so difficult to achieve and to offer both short term

and long-term solutions. The military has focused on interoperability via mandated

technical architectures while ignoring the fact that the logic embedded in system software

is the primary source of roadblocks to system interoperability. For the DoD, it is simpler

to focus on technical standards than to get any of the various services or subspecialties to

agree on exactly what each C2 system should do. Due to its unique nature as “Soldiers

from the Sea,” the Corps interfaces directly with each service, and often buys its systems

from the various services. It therefore bears the brunt of many inter-service

interoperability problems. This thesis will focus on the interoperability requirements for

two current Marine Corps ground command and control systems, the Intelligence-

Operations Server (IOS), and the Advanced Field Artillery Control System (AFATDS).

B. BACKGROUND

In keeping with the American tendency to always seek a better way to do

something, the Department of Defense has continually sought to better control its forces

through the use of computer and other technologies. The intended benefits of automated

control were the ability to control larger forces over a wider area, gain more and better

intelligence, and speed decision-making. One early example of military automation was

the use of the ENIAC computer to calculate firing tables for the field artillery during the

Second World War. However, then as now there were significant social and cultural

1

barriers between military and the computer developers. Because of these barriers the

military focused on physical hardware characteristics, while the logical and software

designs were left to the white coated people - others with more interest in these areas.

Further, the military was often balkanized along services and functional specialties, and

regularly failed to coordinate parallel weapons development and acquisition. In the

automated Command and Control arena, the result is a hodgepodge of incompatible

hardware and software solutions. Some systems effectively manage a particular function

of C2, while others serve as bad examples of wasted funds and overblown expectations.

Although the Global Command and Control System (GCCS) is a successful replacement

for the World-Wide Military Command and Control System (WMCCS) at the strategic

and operational level of war, there is currently no integrated C2 solution for the tactical

warfighter.

The Corps focuses on winning battles and making Marines (i.e., instilling Marine

Corps values into recruits) and generally operates at the operational and tactical levels of

warfare. The Marine Corps rightfully prides itself on its long and illustrious history of

combat success. As the smallest service in the DoD, it has traditionally been concerned

with its own funding and survival. To these ends, it has justified itself to the American

people by being the best at every assigned mission. Although the Marine Corps is

innovative (for example, it developed effective amphibious tactics well before World

War II required them), the Corps relies on tried and true methods and equipment. The

Corps doesn’t have a lot of patience for ineffective or complicated systems. Only in the

last few years have Marines started to realize the potential benefits of reliable, deployable

Command and Control Systems.

Finally, the Corps traditionally is an equipment buyer, rather than an equipment

developer. The Corps does not have large research and development budgets, and what

budget the Corps does have is spent on developing transformational technologies such as

the MV-22 and the Advanced Assault Amphibian Vehicle (AAAV). The Corps allows

the other services to develop equipment as a risk-mitigation strategy. The other service

assumes the brunt of developmental costs and failure risk, while the Corps buys the

resulting equipment. Examples of this strategy abound, and include everything from the

2

M-16 to the F-18. The result is that some Marine-specific requirements often are left out

of new products, because the Corps bought the equipment off the “government shelf.”

Despite these impediments, the Corps has a significant need for effective ground

C2 systems. The benefits of automated C2 are primarily in speedier decision-making and

greater span of control. The Corps needs innovative solutions to C2, and it needs to be

able to interoperate with other joint and coalition forces. The ultimate goal of Marine C2

is to better accomplish the Marine warfighting mission while limiting resource use and

minimizing casualties.

The Marine Corps Systems Command (the organization responsible for

development and acquisition of Marine Corps systems and equipment) has no less than

30 different Command and Control Systems under development. The Ground C2

directorate has seven of these programs under its cognizance, of which two are the IOS

and AFATDS. IOS manipulates and displays the Common Operational Picture (COP),

while AFATDS manages fire support. Both these systems are in wide use in the Marine

Corps today. The lack of interoperability between these two systems is a critical issue

because discrepancies between the two systems contribute to lack of trust in the

information presented to the Commander and degrade the utility of both systems.

C. RESEARCH QUESTIONS

This research addresses the following primary questions:

1. What are the logical underpinnings of AFATDS and IOS?
2. What are the software interoperability requirements between these two

systems?
3. What near-term solutions are there to the interoperability problem?
4. What long-term solutions will be effective in mitigating or preventing future

interoperability issues?

D. SCOPE

Interoperability and integration are recognized both inside and outside DoD as

critical issues. Because of this, there is a significant body of literature and great interest

in the topic. This thesis will narrow the topic by focusing on the logical (high level or

3

system level) interoperability and integration issues between theses two C2 Systems.

Further, it will focus on the two primary tasks of maintaining the Common Operational

Picture (COP), and calling for fire support. Interesting requirements are requirements

about items that help build the COP, such as unit information, position-location

information, fire mission data, and Commander’s Critical Information Requirements.

Uninteresting requirements are for peripheral and supporting data, formatting data, and

textual messages. Also, although there are significant interoperability issues at the

hardware and joint technical architecture levels (i.e., do all systems work together on an

Ethernet LAN or use compatible protocols), these issues are not covered in this thesis.

E. METHODOLOGY

1. Research Methodology

The research methodology consisted of literature reviews of both government and

commercial industry documents, personal interviews with program managers, contractors

and users, and visits to operating units, testers, and developers. Financial support and

extensive research material was received from the AFATDS Program Office, Marine

Corps Systems Command, Quantico, Virginia.

In order to better understand the specific interoperability problems, a trip was

taken to 29 Palms, California to observe Combined Arms Exercise CAX 3 and 4, 2002.

The unit undergoing training at these exercises was MAGTF-6, under the leadership of

Colonel John Coleman, Commanding Officer of 6th Marine Regiment, 2nd Marine

Division. During the period of his command, Colonel Coleman took a proactive

approach to the use of digitized C2, and developed techniques and procedures to

effectively use currently fielded systems. His primary focus has been on the effective use

of the COP at the Regiment and below.

The second field trip was taken to the Marine Corps Tactical Systems Support

Activity (MCTSSA), Camp Pendleton, California, to observe IOS/AFATDS

interoperability testing. This testing was conducted from 25 Feb – 1 Mar 2002 in

response to a message from the First Marine Expeditionary Force (I MEF) Fires Section,

4

indicating serious operational deficiencies and possible fratricide issues in the interface

between these two systems. [1MEF02]

2. Interoperability Analysis Methodology

Joint and Marine Corps Command and Control doctrine is used as justification of

interoperability requirements. C2 Systems are complicated. Both systems under study

were developed for different customers using differing requirements and under widely

differing conditions. Any comparative study of both systems using the requirements

development method from one system would be automatically biased against the other.

For this reason, the Unified Modeling Language (UML) was chosen to model the

significant aspects of both systems. UML provides a common visual language for

representing software systems.

Interoperability requirements and recommendations will be presented in the

context of the Levels of Information System Interoperability – Interoperability Maturity

Model (LISI-IMM). [LISI98] This model succinctly states the requirements for complete

system interoperability, and provides a five-point scale for objectively evaluating current

systems interoperability. Although there is much discussion about the effectiveness of

the automated tools used to evaluate Programs of Record under the model, the model’s

conceptual framework is sound.

F. ORGANIZATION

This thesis is divided into seven chapters, which are organized as follows:

Chapter II introduces the concepts of Command and Control and outlines Marine

Command and Control doctrine. It outlines some of the arguments for and against C2

automation. This doctrinal underpinning justifies the requirements for automated

command and control.

Chapter III introduces the basic concepts of object orientation and describes

pertinent features of the Unified Modeling Language. Justification is provided as to why

UML and object orientation is appropriate for this interoperability discussion.

5

Chapter IV describes the Intelligence-Operations Server. It outlines the history of

the system, analyzes system and interoperability requirements, and describes pertinent

current system capabilities.

Chapter V describes the Advanced Field Artillery Tactical Data System. It

outlines the history of fires automation and the genesis of the system, analyzes system

and interoperability requirements, and describes pertinent current system capabilities.

Chapter VI is an analysis of the interoperability needs of these two systems in

light of the warfighter’s need for effective command and control.

Chapter VII discusses current initiatives that various organizations are taking to

increase the interoperability of these two systems.

Chapter VIII lists the conclusions and recommendations of the study.

G. BENEFITS OF THE STUDY

The primary benefit of this study is a better understanding of the challenges

facing the Marine Corps in the acquisition, integration, and use of disparate Command

and Control systems. Due to its size and primary warfighting focus, the Marine Corps is

in the position of system buyer, rather than system developer. Furthermore, due to the

unique nature of Marines as “Soldiers of the Sea,” the Marine Corps is on the leading

edge of inter-service interaction. In the Command and Control domain, this interaction

typically plays out in serious interoperability disconnects between joint systems while the

Marines are performing real-world missions. Therefore, it is imperative that the Marine

Corps accurately and forcefully articulate its requirements for interoperability to the DoD

and other services while they are building the systems the Marines will someday use.

6

II. MARINE CORPS AUTOMATED TACTICAL COMMAND AND
CONTROL

A. WHAT IS COMMAND AND CONTROL (C2)?

The joint definition of Command and Control (C2) states:

Command and Control is the exercise of authority and direction by a
properly designated commander over assigned and attached forces in the
accomplishment of the mission. Command and Control functions are
performed through an arrangement of personnel, equipment,
communications, facilities, and procedures employed by a commander in
planning, directing, coordinating, and controlling forces and operations in
the accomplishment of the mission. [JPUB01, 89]

Effective C2 is the critical element in the success of every military mission. C2 is

a process. Computer systems designers must understand this process prior to system

design. C2 doctrine forms the basis of all C2 system requirements and merits further

study.

1. Nature of C2

The Marine Corps considers C2 to be “the means by which a commander

recognizes what needs to be done and sees to it that appropriate actions are taken.”

[MCDP06] From this simple definition one can see that C2 frames every decision the

military takes. Command and Control is a pervasive process rather than one among a set

of warfare specialties. C2 is also highly personality-dependent, as it is the commander

who exercises C2. C2 is not assumed but rather C2 is assigned by proper authority.

Command and control has two components.

The first component, Command, is the exercise of properly assigned authority

over designated forces. It is seen as flowing from the commander to the commanded

forces. Command is the use of the commander’s will to carry out tasks. Command may

be limited by statute, mission, or situation. The second element, control is generally seen

as representing the methods that the commander takes to enforce command. However,

the Marine Corps takes the view that control serves as feedback to the commander,

7

carrying information about the command function. [MCDP06, 41] In either case, both

command and control are descriptions of social interaction. While the joint definition of

C2 mentions the five components of personnel, equipment, communications, facilities,

and procedures, the Marine Corps reduces these items to the three “Pillars of Command

and Control.” These pillars are: people, information, and support.

2. People

The first pillar of C2 is people. Commanders are people commanding other

people who may themselves be commanders. Modern warfare precludes the commander

from personally observing everything on the battlefield, and therefore people provide

information to the commander. Further, the commander is unable to personally control

all assigned forces, and so people (staff and other commanders) help the commander

make decisions and take action. The measure of the size of forces a Commander can

manage is called “Span of Control.” Automation increases the Span of Control.

 As an action of people, command is inseparable from leadership. The art of

leadership is the art of people making decisions. People, not computers, make decisions.

Marine Corps doctrine represents the process of coming to a decision using John Boyd’s

Observe-Orient-Decide-Act (OODA) loop (Figure 1). As shown in the figure, this loop

is a continuous cycle. First, the commander must observe his environment and internal

situation. Then the commander orients on the militarily important aspects of the

situation. Using a formal decision-making process, his own intuition, or a combination,

he comes to a point of decision. He then acts on that decision in order to defeat the

adversary. The mechanics of the loop may also be applied to military organizations. It

is generally accepted that the side that more quickly executes the loop will have the

advantage in any conflict. The promise of automation is that the OODA Loop can be

executed exponentially faster than manual methods for large Spans of Control. Because

Command and Control is a function of people, Marines are wary of systems that try to

remove decisionmakers from the Command and Control process.

8

Figure 1. The OODA Loop (From [MCDP06, 64])

Organization and training are two final aspects of people worth mention. People

are organized by the commander to meet the mission. A poor organization will slow the

collection of information, complicate the decision-making process, and take insufficient

or inappropriate action. The commander therefore sets the organization and trains his

people to accomplish the mission and meld his people to his decision-making style.

3. Information

9

The second pillar of C2 is information. Information is generally considered in

terms of an information hierarchy. The Marine Corps uses the hierarchy shown in Figure

2 below. Each level up in the hierarchy requires processing effort and filtering. In this

hierarchy, understanding is the highest rung, and occurs in the minds of people after the

processing of information with their own judgment. Data is the lowest rung in the

hierarchy. Without processing, data is useless. Instead, data appropriate to the situation

must be collected, analyzed, fused with other data. Processed data must be analyzed to

produce knowledge. Then this knowledge must be formatted and presented to the

commander in a timely manner in order to be militarily useful. Because of the sea of data

available, the commander risks information overload. Therefore he must focus his

intelligence (“data”) gathering processes to collect only critical information. The

Commander’s Critical Information Requirements (CCIR’s) are an educated guess on

what will be the information most relevant to making appropriate decisions, given the

current situation.

Figure 2. The Information Hierarchy (From [MCDP06, 67])

As with people and the OODA loop, the information hierarchy benefits from

functional, reliable automation. Information in the military is time-critical, as

information feeds the OODA loop. Information must be available when the commander

needs it. The manner in which information is presented is also critical to absorption.

Most people are more responsive to pictures than text. Automated systems must

therefore be able to present the complexities of the military situation pictorially and

graphically.

10

In conflict, information needs are never completely filled. Because the

warfighting environment is so chaotic, a certain level of information deficit must be

accepted. Many times, the requirement to decide and act swiftly and forcefully

outweighs the requirement for more information. Therefore, automated C2 systems must

focus on satisfying requirements over maximizing requirements. Automated systems

must add value to the commander despite an atmosphere of incomplete or partially

inaccurate information.

4. Support

The final element of Command and Control is support. Support includes items

listed in the Joint definition of C2: the equipment, communications, facilities, and

procedures. Support includes all those things that compose an automated system,

including the communications network, specialized hardware, and software. Support

always has been an element of C2 – an example from the Civil War era is the use of the

telegraph to speed C2 functions. The telegraph was an element of information grid of the

Civil War Era.

Marine doctrine emphasizes that people and information are much more important

than any element of support. This emphasis is added to ensure that technological

wizardry never takes the place of the commander’s decision-making authority. There is

really no concern in the case of procedures – the Corps controls procedures. However,

“technology” is another matter. The Corps views talk from other services of hi-tech

decision-making systems with skepticism. The Corps also rejects technology that permits

micromanagement of tactical commanders. Instead, the Corps emphasizes that

technology should enhance performance while allowing freedom of action for the

commander. Technology may reduce the number of people that are in the organizational

chain, but Marines are wary of decisions made by Command and Control systems. This

particular issue is explored more fully in the AFATDS chapter.

11

5. What Makes Effective C2

a. Command

Command is effective when the commander’s intent is clearly stated. The

commander’s intent is a short statement on why a particular action is being taken and

what the desired end state of the action is. In a rapidly changing situation or the absence

of communications as may occur from time to time in war, a clear commander’s intent

allows for independent action of subordinates to achieve the common goal.

Command is effective when all parts of the military community plan

collaboratively with a single goal in mind. This single goal is referred to as the “single

battle.” Once the single battle is agreed upon, the various parts of the military can plan

with a minimum of confusion and friction. The modern military is a complicated system,

and lack of cohesion can result in fratricide, confusion, and even mission failure.

Command requires unhindered communication both up and down the

chain of command. Communication is the sending and receipt of messages. Both the

message processing and the content must be standardized between parties. For spoken

communication between the services, this clarity starts with an agreed-upon language.

The Joint Dictionary of Terms [JPUB01] provides that common language to the

warfighter. Other agreed-upon standards provide the equivalent support for automated

systems.

Command requires the appropriate level of supervision to ensure that the

commander’s intent is carried out to completion. As previously mentioned, the Corps is

concerned about technology being misused as an enabler for micromanagment.

However, an appropriate level of supervision must be supported by automated systems,

and it is incumbent upon leaders to focus on their responsibilities, even when an

automated system may appear to provide the ability to control everything.

b. Control

12

In Marine doctrine, control is represented as feedback from lower

echelons to the commander. [MCDP06, 40-41] The commander therefore receives

control from the force. Taken in this light, effective control means the Commander

receives critical information in time to make an appropriate decision (i.e., a decision as

nearly correct as possible given the situation). Control implies robust duplex (two-way)

communication. Control requires low latency. Control requires accuracy. Finally,

control includes those actions taken to support the commander’s decision-making

process.

B. C2 AT THE STRATEGIC AND OPERATIONAL LEVELS OF WAR

1. DoD Strategic and Operational Processes

As a result of several serious operational deficiencies in the Department of

Defense during and prior to the 1980’s, the Department of Defense was reorganized in

1986 by the Goldwater-Nichols act. The intent of this legislation was to force the U.S.

military to fight jointly. The benefits of fighting jointly are less interservice rivalry,

reduction in force duplication, clarified service roles, a streamlined joint command

structure, better advice for the president and civilian authorities, reduced costs, and fewer

casualties from internal friction. The performance of the DoD in Desert Storm served to

validate the concepts embodied in the Goldwater-Nichols legislation. This legislation

has had lasting positive effects on each service and the Department of Defense, and is

considered a success.

The Marine Corps and deployed Marine units generally are employed at the

tactical and operational levels of war, although actions taken at this level of warfare can

have strategic as well as tactical and operational consequences. Marine forces are

integrated under the Unified Commands with the other services in accordance with the

Unified Campaign Plan (UCP). The UCP divides the globe into regions and assigns

responsibility for military affairs to Unified Commanders in each region. An example

regional command is the United European Command (EUCOM), which is responsible for

American military forces in Europe and surrounding areas. There are presently 6 Unified

Combatant Regional Commands, including the new Northern Command.

13

The DoD has standardized its planning and warfighting processes to meet the

requirements of joint, global action. The primary process the Joint community uses is the

Joint Operational Planning and Execution System (JOPES). JOPES is an agreed upon

language and a standardized set of processes, supported by common automated systems.

[JJPS95, i] Primary JOPES products are campaign plans and force deployment

information. This critical planning function allows the military to prepare for

contingencies. JOPES processes can be used deliberately or in response to a crisis.

JOPES products (the Operations Plans (OPLANS) and force deployment data (TPFDD))

are information intensive.

2. Systems

The JOPES process was first supported by the World-Wide Military Command

and Control System (WMCCS). The Global Command and Control System (GCCS)

replaced WMCCS in the mid-1990’s. GCCS incorporates the core planning and

assessment tools required by the joint community to meet the information requirements

of the services. GCCS is composed of several mission applications (called the Unified

Build) built on a single Common Operating Environment (COE). GCCS is designed for

networking. GCCS maintains the Common Operational Picture (COP) for the President

of the United States, the Secretary of Defense, and the Unified Commanders. GCCS

primarily serves the strategic and operational levels of war.

Because the modern military fights jointly and often with coalitions, Command

and Control systems at all levels have much greater demands for interoperability than

would be expected for systems that just support the services. Further, C2 systems must

be able to operate across service, distance, and jurisdictional boundaries. As a practical

matter, that means that all C2 systems must interface with GCCS.

14

C. FACTORS AFFECTING TACTICAL C2

1. USMC Maneuver Warfare Doctrine

The Marine Corps has adopted “Maneuver Warfare” for its fighting doctrine. The

alternate choice is “Attrition Warfare.” Attrition Warfare defeats the enemy by head-to-

head engagement with the opposition. In these engagements, the enemy is reduced by

whatever means available, usually with the overwhelming application of combined arms.

The primary focus often is reduction of the adversary’s military force. Attrition warfare is

characterized by the extensive use of fires to reduce the enemy in frontal assaults. The

command structure for Attrition Warfare can be rigidly hierarchical, because what

matters is the ratio of friendly to enemy combat power. Since Attrition Warfare masses

combat power, lower levels of leadership are within the senior commander’s span of

control, and may have little decision-making authority.

Maneuver warfare, on the other hand, endeavors to find the enemy’s weaknesses

and exploit these weaknesses to bring about the desired end state. These weaknesses may

not be associated with the enemy’s combat power. Maneuver warfare may require the

application of overwhelming combat power, but the combat power is applied to the

selected weaknesses. The weaknesses that Maneuver Warfare focuses on are those that

will bring the conflict to an end with a minimum of effort and casualties. These

weaknesses are known as “Critical Vulnerabilities.” Maneuver Warfare requires more

independent action on the part of subordinate leaders, because the senior commander may

not know where all the enemy’s Critical Vulnerabilities are. Instead, the senior

commander issues a mission-type order with his intent clearly stated, and expects his

subordinates to act with judgment in order to meet the commander’s intent.

As a practical matter, automated C2 systems used to support Maneuver Warfare

must support C2 decision-making at both higher and lower levels, while being able to

present the same information to each level. Automated systems must facilitate

information passing between each level of command while being robust enough to

maintain the last known information if communications are lost between units.

15

2. Implications of Combined Arms Concepts for C2

Both attrition warfare and maneuver warfare require the use of “combined arms.”

Combined Arms is the application of two or more warfighting techniques together in time

and space on the enemy. Generally, combined arms uses a direct-fire method and an

indirect fire method. As an example, consider an enemy defensive position. A combined

arms attack could have tanks firing at the position while aircraft drop bombs on it. The

adversary cannot respond to the tank fire without exposing himself to the effects of the

aircraft, and cannot respond to the aircraft without exposing himself to the effects of the

tank fire. The critical elements to making combined arms effective are the effectiveness

of each individual arm, and the combination of them in time and space. Ensuring that

each arm does not affect the other (i.e., avoiding fratricide) is called deconfliction.

The implications of combined arms for C2 systems are complex. First, C2

systems must be able to share information across platforms. C2 systems must be able to

share information between the various warfighting communities with a common

electronic data dictionary. In the example above, the aircraft must be able to

communicate with the tank commander. The tank commander must know aircraft-

specific terms, and the pilot must know all about ground terms. In order to assist with the

deconfliction problem, C2 systems must know the physical effects of the ordnance being

used. The C2 systems must be on common time and share common geo-spatial data.

The C2 system must be able to operate in a time-constrained environment.

3. Effects of Weapons Technology on C2

As weapons have gotten more lethal, friendly force dispersion has grown. Greater

dispersion means C2 systems must communicate across greater distances. A continuing

problem with current C2 systems is their inability to communicate the required amount of

information across empty space, when both senders and receivers are mobile.

One aspect of weapons lethality is precision strike. Precision strike is the ability

to hit targets with a high degree of accuracy. Precision strike drives a need for better

targeting information. The need for better targeting information drives the need for more

16

and better sensors. The net effect is to increase the amount of data passed between the

sensor and the shooter, and the load on C2 systems.

D. BENEFITS OF AUTOMATED C2 SYSTEMS

Automated C2 systems have the capability to generate and maintain the Common

Operational Picture (COP). An Operational Picture is a model of reality rather than a

discrete thing. Conceptually, the Operational Picture is the shared awareness that the

commander and his staff have of the current situation. The concept is formed, shared,

and maintained by models the commander uses to represent the situation. For example,

the Operational Picture can be established on a gridded sand table, with small tanks

representing units on the ground. Or the Operational Picture can be represented on

overlays to a map, with pushpins representing units and hand-drawn lines representing

various boundaries. Finally, the Operational Picture can be a computerized display of

information overlaid on a digital map. What differentiates the COP from an Operational

Picture is that two or more commanders share the COP.

Having everyone use the Common Operational Picture is critical to modern

warfighting. Even if some information in the COP is incorrect, having the same data

across all commands allows for the subject matter expert to correct the mistake one time,

and then share that correction with everyone else. The Joint definition of the COP is: “A

single identical display of relevant information shared by more than one command.”

[JPUB01, 86] As indicated in the definition, the COP adds this final component of

commonality across commands. An example of a COP display is shown in figure 3

below.

One problem with the Joint definition is the use of the words “identical display.”

COP displays are built out of the data stored in automated systems. The displays don’t

need to be identical, but instead the underlying data must be identical. For instance, a

maneuver unit may need a display tailored to present maneuver data, while a fire support

unit may need a display tailored to present fires data. In Software Engineering, a

different representation of the same item is known as a View. Therefore, a View

corresponds with a “Display,” while the underlying data model must agree between

systems.
17

Because of this and other subtle differences in the meaning of COP, two other

terms that represent a portion of the COP are used. The first term, the Common Relevant

Operational Picture (CROP), attempts to limit the amount of information that any one

node must process, using time and space criteria (in other words, “old” data is irrelevant).

The second term, the Common Tactical Picture (CTP), attempts to limit the amount of

information that a node must process by limiting the scope of applicability. GCCS is the

Joint System of Record for the COP, while subordinate systems may contain the CTP. In

either the CTP or the CROP, the commander decides what is relevant, and appropriate

filters are applied to the COP to generate these views. For the remainder of this thesis,

the term COP is used over that of CROP or CTP, emphasizing the need for commonality

across systems.

Figure 3. Typical COP Display (Author’s files).

The ability of properly designed automated systems to share the masses of time-

critical information the COP requires across wide distances is unmatched by any

comparable manual process. The advantages automation promises are that the

commander’s span of control of forces can grow to support truly global operations.

Commanders and staffs can share information and collaborate faster. Automation

permits the staff to clear up some of the confusion of battle. Automating other Command

and Control functions (such as fires delivery in the case of AFATDS) provides similar

18

benefits for those functional areas. Most importantly, automation allows us to execute

the OODA cycle faster than the enemy. Rapid Decisive Operations (RDO) is the DoD

buzzword for this quantum leap in the ability to quickly act.

E. USMC C2 SYSTEM ARCHITECTURES

1. Marine Corps View of Systems Architecture

Generically, Systems Architecture is defined as “Design. The way components fit

together.” [IEEE90] For the Marine Corps, the Systems Architecture is the plan by

which automated systems and weapons are designed, developed, and procured in order to

fit together with other systems. A well-designed and executed Systems Architecture will

provide the framework for effective Command and Control automation across

disciplines. Where there is more than one system, there is a de-facto Systems

Architecture. If the architecture is ad-hoc, and systems are bought piecemeal, the

architecture will be poor. The important thing is to pre-plan systems development and

acquisition so that the Systems Architecture that results is the architecture that supports

the operational requirement. The operational requirement is often expressed as

“Operational Architecture.”

The Marine Corps Systems Command (MARCORSYSCOM) is the Marine

Corps’ principal agent for equipping the operating forces to accomplish their mission.

They are responsible for developing, acquiring, and fielding automated systems. The

Systems Engineering and Integration (SE&I) branch of MARCORSYSCOM is

responsible for the Marine Corps C2 systems architecture. Specifically, SE & I is

chartered to:

• Create and Maintain the Marine Corps C4ISR1 Systems Architecture
• Provide macro-level configuration management for C4ISR systems within
the MARCORSYSCOM

• Provide interoperability and integration analysis for C4ISR systems within
the MARCORSYSCOM [MSEI02A]

1 C4ISR stands for “Command, Control, Communications, Computers, Intelligence, Surveillance, and

Reconnaissance.” As previously discussed, the term “Command and Control” already contains these added
elements. However, variant terms like C3, C4, C4I, and C4ISR are common in the literature.

19

SE & I’s view of the Marine Corps C2 architecture is shown in the table below.

 Technical
Architecture

Systems
Architecture

Operational
Architecture

Controlling
Authority

Headquarters
Marine Corps

MARCORSYSCOM Marine Corps
Combat
Development
Command

Domain Standards,
Protocols,
Interfaces

Systems and their
relationships
(Components and
Subcomponents)

Organizations,
Functions, &
Information
exchange
(Concepts)

MARCORSYSCOM
Role

Use the JTA2 to
build the Systems
Architecture

Create & maintain
the Systems
Architecture

Use analytic tools
to assess where a
given system “fits”
into the Systems
Architecture

“MAGTF City”
Example

Plumbing and
Electrical codes of
house

City Map with
Neighborhood &
Street Location

City Zoning:
location supports
activity

Table 1. “One Architecture, Three Views.” (After [MSEI02B, 4])

Creating good Systems Architecture from the Ad-Hoc architecture of legacy

systems is a tall order. In order to scope the problem, SE&I has built a database (called

MSTAR, discussed in chapter 7) that accurately describes the current systems. From the

database, they have created the “MAGTF C4ISR Integrated Picture (MCIAP).” The

MCIAP pictorially represents all currently fielded C2 systems at the echelon of command

that each system is used. It further shows the communications links by frequency

spectrum (or LAN as applicable) between each node in the command chain. The MCIAP

had to be 13 feet long by 3 feet high in order to accurately and legibly list all the current

Marine C2 systems. This alone shows the complexity of the problem of system-of-

systems integration. While one can argue whether the architecture depicted on the

MCIAP is planned or Ad-Hoc, the fact remains that current C2 systems lack the

interoperability to meet the needs of the FMF.

2 JTA stands for “Joint Technical Architecture.” The JTA is a collection of interface and other

technical standards mandated by the Defense Information Systems Agency, and is discussed further later.

20

SE&I is taking steps to better define and refine the C4ISR systems architecture.

First, they are taking the approved “C4I Support Plan” (C4ISP – see the section on the

Defense Information Systems Agency below) from the joint community and applying it

to future Marine Corps system buys. Second, the SE&I has developed a problem

targeting process for allocating limited funds. This process conducts “problem triage” by

dividing problems into near-term, mid-term, and far-term interoperability issues. Near-

term issues are defined as those issues that must be handled before the next budgeting

cycle, while mid-term issues are handled in the next budgeting cycle. Finally, far-term

issues are those that occur beyond the next budgeting cycle. The choice of the budget

cycle as a delimiter is a natural one for MARCORSYSCOM, as the budgeting cycle

provides the capital required to make changes. However, the budgeting cycle is complex

and maddeningly slow. Generally, Marines in the FMF will not see the results of a “mid-

term” fix for a minimum of 4 years from the identification of a problem.

No matter the timeframe of the fix, SE&I is able to bring pressure to bear on

Marine Program Officers to modify requirements to meet interoperability goals. These

program officers also work at MARCORSYSCOM, and each of their programs have

“Integration Key Performance Parameters” (I-KPP’s) that contractors must meet. SE&I’s

intent is to better define these I-KPP’s organizationally, and then require the Program

officers to force contractors meet them. Finally, SE&I branch has all C2 systems under

configuration management, and has tasked MCTSSA with conducting end-to-end

systems testing. These efforts are explored further in Chapter 7.

2. Problems with the USMC’s Systems Architecture and Acquisition

Myriad items prevent reaching the goal of true systems interoperability. The list

of items below is a short explanation of the issues most important to the Marine Corps

interoperability problem.

a. Cultural Inertia

Institutionally the Marine Corps has embraced C2 automation technology

as a warfighting enabler. The rank and file is not so sure. As previously mentioned, the
21

Corps culture is resistant to change. This list is a representative sample of comments

about C2 heard from FMF commanders and staffs:

• “A computer with a bullet hole in it is a paperweight. A map with a bullet
hole in it is still a map.”

• “I’d rather command from the front, not from behind a computer.”
• “So now we’re bringing five generators and three dozen computers?”
• “What’s wrong with voice? Digital is too hard.”

The first comment, most recently overheard from a Marine Colonel in

May 2002, reflects distrust in C2 systems resulting from a perceived lack of system

availability in combat conditions. The second comment addresses the position that C2

systems are for a different (lower) class of people than warfighters and couches the

argument in terms of leadership. The third comment reflects the FMF’s experiences with

unwieldy legacy systems that use excessive valuable combat lift. The fourth comment

points to the need for specialized skills to operate automated systems.

None of these comments bears up under close scrutiny, but insofar as

Marines feel this way, they tend to act in ways that fulfill their perceptions. For example,

a Commander that doesn’t trust C2 systems won’t use them. If the systems aren’t used,

the specialized skills that are needed to operate them atrophy. Without use, the systems

can’t be improved. Any spare funds that units receive is not spent on improving

automated gear, but instead is spent in other ways. The net result is the status quo is

maintained to the ultimate detriment of the organization.

b. USMC as System Buyer

22

The Marine Corps is most often a system buyer rather than a system

developer. [MSEI02C, 3] The Marine Corps operates this way because it saves costs and

lowers risks on individual systems. Another service, as lead developer, must manage the

program and bear the associated costs. The lead service must answer questions from

congress and other oversight bodies about cost, schedule, and performance issues. Risks

for the Marine Corps are lowered because at the end of the process, the Marine Corps

gets the finished product. Other services like the arrangement because having the Corps

participate in a project allows for economies of scale, and the item can be marketed as a

multi-service or joint product.

Yet, this strategy has significant risks. Because Marines often fight in the

seams between the Army, Navy and Air Force (such as in the littorals), interoperability

requirements are critical for the Corps. But the Corps may not completely understand the

complexities of interoperability between the systems. If the Corps can’t clearly articulate

its Interoperability Exchange Requirements (IER’s), then the lead service can’t

implement them. The linkage between the lead service and the Corps may not be fully

defined, and a liaison may not be assigned. If a liaison is assigned and the Corps

adequately defines its requirements, the lead service may not meet the Marine-specific

requirement without offsetting funding. Finally, if a systems development effort is later

cancelled, there is rarely a backup plan for a replacement system. The end result is you

get what you pay for.

c. Stovepiped and Overlapping Development Efforts

The Corps has several “bright idea” clearinghouses. In the C2 area, there

is the Marine Corps Combat Development Command (MCCDC), the Marine Corps

Systems Command (MARCORSYSCOM), the Marine Corps Tactical Systems Support

Activity (MCTSSA), and the Marine Corps Warfighting Lab (MCWL). Each of these

agencies has a charter that gives it some piece of the automation pie. There are other

non-Marine supporting agencies such as SPAWAR and contractors that also produce C2

hardware and software. Among even this short list, often items are developed without

consultation or in competition with other agencies. A real-world example is the

development of FOFAC/TLDHS/UCATS/MELIOS. Each of these acronyms represents

four different takes by four different agencies, representing different interest groups, on

the same concept of a universal spotter device. The same situation exists for C2 systems,

but because of the broader span of control of C2 systems, they are often supported by the

different warfighting communities. Coordination between the various systems ought to

be accomplished via the Systems Architecture, but the Systems Architecture enforcement

mechanisms are focused on the acquirers, not on the requirements developers. And the

Systems Architecture isn’t jealously protected like programs are.

23

d. USMC Seen as a Bit Player Among Competing Interests

The joint arena may decide that Marine Corps requirements are of lower

priority than other competing interests. The other services have specific goals, and these

goals may be in conflict with Marine goals. Although the effects of Goldwater-Nichols

have begun to percolate through the DoD culture, there may still be some interservice

rivalry that results in serious disagreements about requirements and interoperability.

Most often, these disagreements are philosophical rather than technical or substantive.

One example explored more fully later is the inability of the services to agree on a single

common identifier for a unit.

e. Software Project Management Challenges

Software intensive systems are much harder to manage than other projects.

Software is “computer programs, procedures, and possibly associated documentation and

data pertaining to the operation of a computer system.” [IEEE90, 184] The nature of

software is different than that of hardware. One cannot see, touch, taste, smell, or hear

software, only its effects. Software isn’t bought in traditional units (I’d like five lines of

code, please), and having more software doesn’t necessarily mean more capability – in

fact, it often means having more failures. Software design and coding is typically

extremely error prone, and no one expects reliable software after the first attempt. In

fact, the first attempt is called “alpha,” and the second, “Beta.” Often only on the third

attempt is software even released.

Managing Software projects is complicated by the lack of good

requirements. Few users know what they want until they see it. Customers may not be

aware of what the software can do, and therefore may not ask for capability they can’t

imagine. In a traditional management paradigm, by the time the customer sees software,

the money has already been spent and the product has already been developed. Changes

are too late. This is complicated by the DoD acquisition process, which requires people

to know what they are buying before funds are allocated – almost an impossibility with

software. Finally, computer power and processing ability keeps growing exponentially.

Users “in the know” change requirements during software development process with the

24

expectation that all the interesting features they’ve seen advertised are available for them

on their project, now. Yet changing requirements in the middle of a design effort is an

indicator of a failing project.

There are no good metrics that correlate to good software. As already

mentioned, size (lines of code or number of modules) tells one little about operational

effectiveness. Complicated code is not necessarily good code, and one can’t tell which is

which without extensive experience. Military software is fundamentally different than

popular civilian software in several ways. People depend on weapon system and C2

software to work correctly all the time – it is mission and time-critical. Civilian software

is not so judged.

These and several other software management issues are the reason why

“software is now recognized as the highest risk system component in virtually every

major defense acquisition.” [GSAM00, 33] These problems are magnified across a

System-of-Systems. Each system not designed, developed, and deployed to a common

standard is tomorrow’s legacy stovepiped system.

F. CURRENT C2 DEVELOPMENT ENVIRONMENT

1. Overview

The Marine Corps operates within the Joint C2 Development environment. The

joint environment layers organizational and bureaucratic issues on top of all the other

technical issues associated with C2. The Joint C2 development environment is complex,

and at times chaotic. Complexities include drastic changes in DoD policy from

administration to administration and year-to-year, myriad different Joint agencies with

oversight, and lack of an accepted Joint Systems Architecture. The primary Joint agency

is the Defense Information System Agency (DISA). This section discusses DISA and

other Joint players relevant to the AFATDS/IOS discussion.

25

2. DISA

The Defense Information Systems Agency is a DoD support agency under the

control of the Assistant Secretary of Defense for Command, Control, Communications

and Intelligence [ASD (C3I)]. The Agency began in 1960 as the Defense

Communications Agency (DCA) to consolidate the communications functions common

to the military departments. In 1991, the name was changed to DISA. Functions given to

DISA include maintaining the Global Information Grid, which is the sum total of all

deployed communications and networking assets owned by the DoD. DISA has an

interoperability directorate, and is required to test and certify C2 systems for

interoperability according to the DII COE compliance scale, mentioned below. The Joint

Interoperability Test Command (JITC) in Fort Huachuca, AZ conducts this testing. Of

note, the services have been delegated this authority to certify their own systems for DII

COE compliance. JITC has assumed responsibility only for truly joint systems such as

GCCS. The Army certified AFATDS.

There is a joint Systems Architecture. DISA maintains the Command, Control,

Communications, and Computer Information Support Plan (C4ISP). The C4ISP is a

collection of documents and pictures that express the “as-is” and “to be” operational

architectures in DoD. The C4ISP forms the basis of the Marine Corps’ “C4I for the

Warrior” (C4IFTW) concept. However, the C4ISP has taken years to develop, and is

inclusive of all services and systems. Therefore it is aimed at the lowest common

denominator, which hinders interoperability.

DISA also maintains the Joint Technical Architecture (JTA). The JTA is a

collection of computer and interface standards that all automated systems are supposed to

meet DoD-wide. Many of these standards are the same as civilian standards. An

example JTA standard is the Transmission Control Protocol/Internet Protocol (TCP/IP).

The JTA forms the basis of all technical architectures. Meeting the specifications of the

JTA is not terribly difficult for COTS products, since most of the standards are

commercial standards to begin with. Meeting the requirements of the JTA are a little

more difficult for GOTS and specialized systems (including legacy systems), as they

26

must be designed in and may require code changes. Yet, meeting the JTA does not

guarantee interoperability.

3. ASD, AT&L (Interoperability)

The office of the Assistant Secretary of Defense, Acquisition, Technology, and

Logistics (ASD, AT&L), has an Interoperability director. Projects include the “Global

Information Grid” and the Joint Warfighting Capability Assessment Reports. [DATL02]

The relationship between this OSD and DISA, which as previously stated, is under ASD

C3I, is unclear. Trying to contact a member of their office proved fruitless. This is

another example of the continuing confusion surrounding “who’s in charge” of

information in the DoD.

4. GIG COE

The original name for the Global Information Grid was the Defense Information

Infrastructure (DII). In the 1998 DII Master Plan, the DII was described in part as,

“…the web of communications networks, computers, software, databases, applications,

weapon system interfaces, data, security services, and other services that meet the

information processing and transport needs of DOD users, across the range of military

operations.” [DIMP98] In October 2001, the name was changed by DISA to the Global

Information Grid (GIG). [FCWK01] The name change was meant to reflect a “new way

of doing business,” focusing on connecting people a la the internet, vice a monolithic,

single-purpose system. In fact, the term “GIG” is not often used, and most documents

still refer to the DII COE. However in either case the intent is to standardize the logical

underpinnings of all DoD information systems. To that end, the Common Operational

Environment (COE) was established.

The roots of the COE go back to the Joint Maritime Command Information

System (JMCIS). In 1995, Admiral Gauss was working on this Command and Control

System for the Navy at SPAWAR. When he went to DISA to become its director, he

took the Operating System and Common Application Program Interfaces (API’s) and

made them the de-facto standard for the emerging Global Command and Control System
27

(GCCS). The collection of these API’s and other standard software was termed the

Unified Build (UB). ([BUDD02] and [BULL02]) The GIG COE (or DII COE) is built

as shown in figure 4 below.

Figure 4. The DII COE Conceptual Model (After [WALK01, 3]).

The model has four layers. The first three are listed in the bubbles on the left of

the diagram. The bottom layer is the Kernel, and interacts directly with the Operating

System. The second layer up is “Infrastructure Services,” and contains basic

communications and administrative functionality. The third layer is the common support

applications. It is this layer that individual Command and Control Systems were

duplicating again and again – now if someone builds to the COE, those functions do not

need to be re-written. The fourth and final layer contains the business and functional

applications, shown as arches built on the framework of the first three layers.

Eight Levels of DII COE compliance are specified in the Integration and Run-

Time Specification. (DII COE I&RTS). Now that DISA was mandating use of the DII

COE, C2 system program managers and hardware vendors strove to get “DII COE

compliant,” so they could be certified. Of course, compliance with the DII COE standard

will facilitate interoperability. DII COE compliance is necessary but not sufficient to

ensure interoperability. The only problem was that all these programs have long lead

times, different leadership, and institutional goals that generally supercede

28

interoperability goals. In order to ensure everyone could be certified, eight levels of DII

COE compliance were introduced. The 8 levels are shown in the Table below. Notice

that system-of-systems interoperability is not addressed until level 7. Thus, it is not

good enough to have a DII COE (or GIG COE) compliant system, but it must be at least

level 7 or 8 compliant to be truly interoperable. This is a source of confusion for many

warfighters.

Level Name
1 Standards Compliance
2 Network Compliance
3 Platform Compliance
4 Bootstrap Compliance
5 Minimal DII Compliance
6 Intermediate DII Compliance
7 Interoperable Compliance
8 Full DII Compliance

Table 2. DII COE Levels of Compliance (After [DIRS97].)

5. JROC

The Goldwater-Nichols Act of 1986 reformed the Department of Defense with the

purpose of reducing the excessive influence of the four services and increasing the power

of the Joint Chiefs of Staff to meet the country’s defense needs. One particularly

troubling area of interservice rivalry was in acquisition and procurement of non-

interoperable materiel. This resulted in an inability to fight together because systems

were not interoperable. It also wasted resources, as the services would buy duplicative

items. [LOCH02, 437] Therefore, the act strengthened the role of the Chairman of the

Joint Chiefs of Staff (CJCS) and gave him a Vice Chairman (VCJCS). The VCJCS

chairs the Joint Requirements Oversight Counsel (JROC), which is composed of the Vice

chiefs of each of the military services.

The Joint Requirements Oversight Counsel (JROC) is the senior military body

charged with reviewing all major defense acquisition programs for alignment with Joint

warfighting goals expressed in the Universal Joint Task List (UJTL). The JROC

validates new mission needs, reviews program alternatives, and evaluates programs on

the merits of their Key Performance Parameters (KPP’s) along the life of the program. If

29

a program is not meeting its KPP’s, the JROC can recommend that the program be

modified or cancelled. Systems interoperability is a KPP. By controlling the purse

strings via joint oversight, the intent was to force the services into interoperability. The

JROC could be the one single unifying entity in the search for interoperability, as they

have the military rank and the statutory authority to make difficult calls on funding. The

JROC has the responsibility and authority to require interoperability fixes to programs.

Yet in the fifteen years since Goldwater-Nichols, true joint acquisition reform has

not occurred. Instead, the JROC operates by consensus, which means if a service wants

their project to go forward, the other vice chiefs agree to let it go forward if theirs will

too. [LOCH, 443] Several previous JROC chairmen have expressed frustration that

deep-seated service resistance thwarts their best intentions. [LEDE99, 95] Further,

congress has never called the Chairman of the JROC to testify on budgetary issues,

despite its statutory role. [LEDE99, 95] This lack of credibility with congress translates

to a lack of ability to meet oversight goals. The one internal oversight body with the

power to force interoperability has not lived up to expectations.

6. SPAWAR Charleston

The Space and Naval Warfare Systems Center, Charleston, South Carolina, serves

as the project engineer for the Marine Corps on several major Command and Control

Systems. The table below lists several of the systems that SPAWAR Charleston

currently manages for the Corps.

30

Acronym Short Title Description
GCCS Global Command

and Control System
Provides the fielding plan, hardware, and software
builds for the GCCS terminals in the Marine Corps

DACT Data Automated
Communications
Terminal

Provides the terminal for Forward Observers to
enter data for transmission to C2 systems such as
AFATDS

EPLRS Enhanced Position-
Location Reporting
System

Provides digital radio communications between C2
nodes.

IAS Intelligence
Analysis System

Collates and provides intelligence information from
multiple intelligence sources. IAS software is what
differentiates IOS (V2) from IOS (V1).

IOS Intelligence-
Operations Server

DII COE compliant hardware and software. IOS
(V1) is TCO software; IOS (V2) is TCO and IAS
software.

TCO Tactical Combat
Operations

Software that maintains the Common Operational
Picture at the Division and below.

Table 3. Pertinent C2 Projects at SPAWAR Charleston

From an interoperability standpoint, it is advantageous to have the several system

developers resident in the same building. As discussed later with IOS, there has already

been significant consolidation among the various systems and funding lines. Further,

SPAWAR Charleston clearly has support of the warfighter in mind. Specifically, they

have created a communications website, using collaborative technologies, that allows all

users with an HTML browser and appropriate permission to communicate with Project

Officers, Requirements Generators, and project engineers. [SPAW02] Each project has

Point of Contact listings and a “discussion room” that permits valuable group interaction.

This website, called TACMOBILE, is one of the critical items in making C2 systems

usable in the fleet.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

III. THE UNIFIED MODELING LANGUAGE

A. INTRODUCTION

Software must model the real world. The fidelity of the software model to the

real world is a good indicator of whether the software product is effective or not. An

example from the financial world could be a bank account. In the past, there was a stack

of money that customers gave to the bank. The customer had physical items (gold or

bills and coin) to hand over to the bank, that the bank kept. The bank may have paid

interest, which could be withdrawn along with the principal. Either way, the customer

knew where the money was located, and could make a withdrawal. Then along came

software and automated record keeping. There may not be any bills or coin in the bank

vault, but the customer expects the software to accurately model his or her bank account,

including the interest. Both the bank and the customers trust the software with a very

important asset – money. Further, the customer can now do so much more – say go to

Europe and withdraw money denominated in Euro’s from his or her same account.

The Unified Modeling Language (UML) has become the de-facto standard

software modeling language. The UML is useful for eliciting the business rules and

processes that form the basis for software modeling, for generating requirements, for

design, and for coding of object-oriented systems. The UML provides an easily

extensible common visual language for representing objects and their interactions. Grady

Booch, one of the principal authors of the UML, states; “UML is a graphical language for

visualizing, specifying, constructing, and documenting the artifacts of a software-

intensive system.” [BOOC97, xv]

UML is an effective solution to eliminate the Tower of Babel problems previously

extant in the Software domain. Previous methods of software modeling presentation

were heavily personality dependent, and the semantics and syntax of the various

modeling languages were a constant source of debate. UML standardizes the language

semantics and syntax, while providing a method to easily extend UML to fit those

situations where the basic language can’t adequately communicate.

33

1. Object Orientation

The portion of the world that a particular software application attempts to model

is known as the problem domain. Objects are things, concepts, or entities associated with

the problem domain. [LARM98, 6] Example objects in the banking problem domain

could be money, ATM, and account. Example objects in the C2 problem domain could

be friendly unit, country boundary, and map. Object-oriented analysis (OOA) focuses on

identifying all the relevant objects in the problem domain that allows answering the

questions the software was designed for. In the banking example, if we only want to

know about savings, we would model savings accounts and a check might not be an

object. This is a model with low fidelity. If we wanted to have a banking model with

higher fidelity, then we could model savings, checking, and loan accounts.

Objects in OOA are associated with other objects. The job of the analyst is to

capture the attributes of the objects, the associations the objects have with other objects,

and the actions the objects can take. This data is collected along with the desires of the

customer about what the software system is supposed to do. These requirements and

object descriptions lead to a more formal definition of the requirements for the software

system. How the objects interact with each other is captured not only in the associations,

but also in the business rules that are in the problem domain. These business rules are

captured in a “Business Use Case.” The Business Use Case is a step-by-step description

of what happens in a given situation.

Object-oriented analysis leads to object-oriented design. Object-Oriented Design

(OOD) focuses on designing software objects that correspond to the objects discovered in

OOA. The design is then encoded into an object-oriented programming language.

During the design stage, objects are given attributes and methods. An attribute is a

particular feature of the object, while a method is what the object can do. Returning to

the banking example, an account has an attribute called “balance,” which is expressed in

dollars and cents. If we imagine an account can check its own balance and report it, then

account could have a method called “get balance” (or getBalance) which would report the

balance in dollars and cents. Following the same concept in the C2 world, a friendly unit

34

could have an attribute indicating how large the unit was (numbers of people), and it

could change geographic locations (move).

OOD leads to object oriented code. In order to do this, the essential features of

each set of the same or similar objects are abstracted into object Classes. A Class is a

framework for objects of the same name. Returning again to the Command and Control

example, a Class might be “Friendly Unit,” with objects in that class being 1st Platoon,

2nd Platoon, and 3rd Platoon. These platoons are instances of the Friendly Unit Class.

Once they are created (creation is known as instantiation), they keep all their own

attributes and methods until specifically destroyed. If the Friendly Unit Class has a Move

method, then each platoon can move independently and remember where it is.

Object orientation is just one way to look at the world, but object-orientation

captures data and actions in a way that supports some basic software goals. The primary

goal is working software with less complexity for the developers and programmers.

Object orientation supports that by hiding the internals of objects from other objects so

they can’t interfere with each other. It also supports software reuse by allowing objects

to inherit attributes and methods from other objects. Finally, objects can remember

things about themselves, an important attribute for software systems.

2. Advantages of UML

There are many ways of modeling real-world processes and converting those

models into working software. In fact, there are too many methods. The primary

advantage of UML is that it has gained wide acceptance in the software development

world and has become the language of choice to represent OOA/OOD. Of course, it

became popular because UML had some specific advantages over previous methods.

UML is visual, allowing people to visualize how software models interact. The

visual components are standardized and fairly easy to learn and manipulate. UML is

extensible. This means that there is a standard way of adding features to the language if

there are items in the problem domain that do not fit the standard. Being object-oriented,

UML models lend themselves to direct conversion into code using an object-oriented

language such as Ada, C++, Java, or SmallTalk. This conversion can be done
35

mechanically, and in fact there are several software packages that will turn sufficiently

detailed UML models into computer code.

3. Why UML is Useful for this Project

UML was developed starting in 1994. [BOOC99, xix] The AFATDS project

started in 1981, and used a different software modeling process to describe the business

rules in the Fire Support Problem domain. The primary precursor to the IOS software

suite was being developed from other software in 1995, and also did not use UML. Yet,

UML allows presentation of complex topics in a visual, simple way. Using UML permits

an appropriate level of abstraction. Finally, since both systems were developed

completely differently, UML serves as a common description language of the military’s

business rules and these systems.

B. USE CASES

The first step in object-oriented analysis of a problem domain is to find objects

and business rules. Objects become classes. Business rules become Use Cases.

Decisions are made about what the software we are designing is supposed to do. In order

to better understand the UML, we will model a simple process from the Command and

Control Arena – create and move an infantry platoon. The name of the platoon is 1st

platoon, Alpha Company, 1st Battalion 2nd Marines. It is composed of 3 squads. It is full

strength. It is at a particular location, location X. The Commander orders it to move to

location Y. The software system we are designing takes automatic data updates over

tactical radios from a GPS receiver at the platoon. The Tables below lists the

requirements for the software System and the Use Case for this scenario.

User Requirement: Sub-Category Requirement
Number

Store Unit info • Store Name
• Store Unit Strength

R1.1
R1.2

Track Unit • Automatically Update location R2
Table 4. Unit Tracking System Requirements

36

USE CASE: Unit Tracking System: Track Unit
Actors: Commander, Friendly Unit
Purpose: Accurately model a moving unit.
Overview: This Use Case describes a command and control system that

tracks moving units using automatically updating GPS
coordinates. The system must be powered on and
communications must be set up prior to entering this Use Case.

Type: Primary and Essential
Cross References: R1.1-1.2, R2
Actor Action System Response
1. This Use Case is initiated when an
operator (working for a commander) creates
a unit in the system. The operator enters the
Unit Name, Unit Strength, and Unit
communications ID.

 2. The system loads the data and listens
for messages from that unit, using the
Unit Communications ID.

3. The unit GPS receiver periodically reports
its position.

 4. The system displays the unit as an icon
on a map displayed on the screen.
Information includes the Unit Strength
and Unit Name.

5. The commander orders the unit to move.
 6. The system displays the unit as it

moves.
ALTERNATE Courses: Step 4: If the system does not detect the unit communications
ID within a commander-definable period, the system alerts the operator that
communications have not been established.

Table 5. Unit Tracking System Use Case

1. Actors

37

Actors are people that use the software. Actors can also be other software that

uses the software we’re designing. The key is that Actors are outside the software we are

designing. In table 5 above, the Actors are the Commander and the Friendly Unit. The

Friendly Unit contains a sensor. The sensor is not a person but a device that sends its

position. The sensor could be in this Use Case if the designers thought it would be

important to accurately model the situation. Also notice that “Friendly Unit” is an actor,

not 1st Platoon. 1st Platoon could be used, but the system is designed to handle many

reporting units besides 1st Platoon. Finally, often positions that are not critical to the

understanding of the Use Case are not listed. This is the case with the operator, who

needs to be there, but acts as an interface between the Commander and the system.

In UML, a Use Case is diagrammed as shown in figure 5 below. The bubble is

the Use Case, while the box represents the system boundary and the stick figures

represent the Actors. There can be several Use Cases inside the system, and there would

be a Use Case narrative for them as well. The lines that connect the Actors to the Use

Case indicate an association between the Use Case and the Actors. The nature of the

association is described in the Use Case narrative.

Figure 5. Unit Tracking System

2. Classes

Continuing with this example, two classes that can be derived from this Use case

are the Friendly Unit Class and Map Class. The Friendly Unit has attributes of Unit

Strength, Unit Name, location, and Communications ID. The Map Class has lower left

hand corner location and scale. There are many other attributes that can be attached to

these classes. There is no limit to attributes that can be associated with Classes in the

model, although of course there are practical limits to how much a computer system can

store and process. The Friendly Unit has a method called Move, which takes a location

and moves the unit to that location. In the real world it matters how location is

represented – let’s say for this example that locations are in the Military Grid Reference

System (MGRS), and that six digits are sufficient. When designing an actual system, all

these types of requirements (what type of data and how its represented) are critical for the

38

system users to define for the system designers. Figure 6 below shows how these classes

are represented in the UML.

Figure 6. UML Example Class Diagram

For each class, the top part of the class box shows the Class Name. The middle

part of the box lists all the Class’s attributes. The bottom box lists the Class’s methods.

The plus sign in front of each attribute and method indicates that the attributes and

methods are visible outside the class. The minus sign in front of UnitLocation in the

FriendlyUnitClass means that attribute is not visible outside the class. What this means is

that a new location can only be accessed via the Move method. This is an example of

data hiding – now the location of the unit is protected from some programmer errors.

Notice also that each attribute is defined in terms of the language – in this case, Strength

is an integer variable, and it is up to the system designers to define (in the comments and

by proper usage) that Strength means number of people. Or an alternate tack can be

taken where the designers define their own data type. An example user-defined type is

Location in the figure above. Another Class diagram would show what a Location

consists of.

C. COLLABORATIONS

After the Classes and Use Cases have been determined, the Use Cases are

evaluated to determine the order of activity in the diagrams. There are two major

methods used to show collaboration in the UML. The first method is with a collaboration

diagram, and the second is with a Sequence Diagram. The two diagrams are functionally

very similar. Both diagrams are shown here for a portion of our example Use Case.
39

 Figure 7 shows a collaboration diagram for the action of the Commander moving

First Platoon. In this example, the commander orders the unit to move. This first action

is reflected by First Platoon’s sensor periodically reporting a new location, which is

displayed on the current map. Notice the associations show the use of the methods

previously declared for the various Classes. Also notice that 1st Plt is an instance of the

Friendly Unit Class. These actions are not constrained by time. The only thing specified

is the order of execution.

Figure 7. UML Collaboration Diagram

Figure 8 shows the equivalent UML Sequence Diagram. In this diagram, the

Objects and Actors are listed across the top. Each object and Actor has a lifeline

corresponding to it. Time flows from top to bottom. Action is signified by sending

messages. On the diagram, messages have an arrow going from the originator to the

receiver. Exactly what time something happens is not specified, but again the order of

message delivery is specified.

The boxed message in the middle of the diagram is a comment, and is placed over

the system boundary. Notice the Commander is external to the system. Of course, First

Platoon is outside the system as well, but the actual first platoon is not on this diagram –

only the 1st Plt object inside the system is depicted. There can also be lines going from

an object back to the same object. This represents computer processing internal to an

object. Often, these lines indicate a process that takes extra time or shows processing that

supports further message passing in later steps.
40

Figure 8. Example Sequence Diagram

D. CONCLUSION

All the drawings and documents created during the software development process

are called artifacts. One software development process (the Unified Process) has broken

down the phases of software development into Inception, Elaboration, Construction, and

Transition. The diagrams produced here cover parts of the inception and elaboration

phases. However, in order to develop software, several other artifacts are needed, at a

greater level of detail. These artifacts can also be expressed in UML and its associated

tools. The artifacts shown above are sufficient to complete the analysis needed for this

thesis.

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

IV. THE INTELLIGENCE – OPERATIONS SERVER (IOS)
SOFTWARE SUITE

IOS is the Marine Corps program that supplies the intelligence, communications

and processing capability needed to meet the Commander’s requirement for C2 at the

tactical level. IOS receives, fuses, displays, and disseminates selected operational input

from the MAGTF’s other C2 systems. It is intended to meet the need for the commander

to conduct all aspects of C2.

A. HISTORY

1. Introduction

The history of the Intelligence-Operations Server is not well documented. Unlike

AFATDS, which has had the sponsorship of the Army, the artillery community, a

program office and program managers for the length of the program, IOS evolved from a

collection of different program offices and programs that were developed over a period of

years. In general, the software from which IOS is composed was written to meet the

needs of the Navy and the Maritime C2 environment. This environment and the Navy’s

unique approach to Command and Control drove many of the software design decisions.

Interoperability with ground C2 systems was not a primary goal of the original systems.

In order to better understand the drivers behind IOS, it is appropriate to study the aspects

of the Maritime Command and Control Environment.

2. The Maritime Command and Control Environment

43

Each Naval ship has a significant amount of autonomy. Likewise, a Naval

battlegroup also has significant authority and responsibility to carry out assigned tasks

with limited involvement from higher units. Area coordination between battlegroups is

accomplished through assignment of geographic Areas of Responsibility (AOR’s).

AOR’s are large, allowing for significant maneuver room for the individual battlegroup.

When at sea, communications between ships have always been severely limited by

distance and the mobile nature of seagoing vessels. Therefore, ships tended to be self-

contained, self-supporting units with strong internal bonds and the ability to carry out

assigned missions with a maximum of autonomy.

In this environment, the focus on C2 functions such as intelligence gathering was

on internal needs, rather than on reporting to higher units or maneuvering as part of a

group. Typical questions were: how far away is the nearest land? Where is the rest of

the battlegroup? How far is the enemy from me and how fast is he closing? Once the

captain of the ship gained enough situational awareness, he could make decisions and act

autonomously. Radar, observer, and other sensor feeds were processed and collated

aboard ship in the Combat Information Center (CIC). Many times, decisions could be

made with a minimum of information – for example, a Radar contact could be deemed

hostile if it was moving toward the ship at a high rate of speed without radio contact.

As radio communications became more robust, there was a natural desire to share

information between ships in a battlegroup in order to better task organize. For instance,

in a Carrier Battlegroup, one ship would be given the Anti-Air Defense Coordinator

(AADC) role, responsible for protecting the battlegroup from air attack. This meant that

such a ship would need the complete air picture for some distance around the battlegroup

in order to protect it. Because of the limited communications bandwidth and the

multicast nature of radio communications, radio networks were designed to pass the

minimum amount of information possible. Only the most important information was

passed. This information amounted to the type of contact, and its location, course, and

speed. This position-location information was called a “track” because in general, the

information was displayed as an icon with a leader indicating course and speed on a

display. Sailors initially maintained these Manual C2 displays by writing the information

with grease pencils on clear boards. As these manual displays were automated, the

terminology remained.

In naval circles, a track is a single item to be displayed in the COP, like a ship.

Many details about the ship were unimportant for immediate decision-making. Important

information about a track included its location, bearing, and speed. It also mattered what

type track it was - whether it was above, on, or under the sea. As Naval C2 systems

44

developed into multi-service systems, the definition of a track began to change. In 2002,

the Joint Chiefs of Staff defined a track thus:

A track is a single entity reported on the COP such as an aircraft, ship,
TBM [Tactical Ballistic Missile] or emitter location. A track can also
designate an aggregation of military personnel, weapon systems, vehicles,
and support elements or any other operationally significant item.
[JCOP02A]

One can see the naval history to this term in the first sentence – a track was

traditionally a single entity reported to the ship. The second sentence demonstrates the

change in the definition of the term beyond its original meaning. However, changing the

definition of a track in a dictionary to include ground scenarios is much different than

independently developing a concept of the data needed to represent a ground unit.

In an ocean environment, maps could be rudimentary – the ocean is flat.

Navigators handled navigation with specialized maps and systems, and generally

navigation was done without the aid of C2 systems. Important spatial information for the

C2 systems were the AOR and other man-made control measures, and the location of the

shoreline in relation to the ship. It was in this context that Naval Command and Control

Systems were developed.

3. Joint Maritime Command Information System (JMCIS)

Although the history of Naval Command and Control systems starts long before

JMCIS, JMCIS is the father of the current Naval C2 systems, to include the Global

Command and Control System – Maritime (GCCS-M). In fact, DISA took the Unified

Build from the JMCIS program. Figure 9 below shows the evolutionary development of

JMCIS from the myriad stovepiped Naval Command and Control Systems developed

during the 1970’s through 1995.

45

Figure 9. JMCIS Lineage (After [BUDD02])

The Space and Naval Warfare Command (SPAWAR) had responsibility for

developing JMCIS. Understanding exactly what each acronym stands for in the diagram

is unimportant. What is interesting about the lineage shown in Figure 9 is its

evolutionary nature and the ability of the Navy to get the developers of the other C2

systems to relinquish control of their Programs of Record and budget in favor of a

common system. Of course, many technical and systemic hurdles had to be overcome in

order to completely integrate these programs. Rather than integrating systems, JMCIS

engulfed these systems – taking the funding and personnel from each.

From an organizational standpoint, integration became feasible as people realized

the massive duplication of effort inherent in the development of different systems. Each

system had up to 80% of its software functionality in common with the others. For

example, each system had methods to display charts, to place tracks on the chart, to send

and process alerts, to “chat” (collaborate between nodes) and send messages, etc. Some

programs were even sharing code for these common functions. [BUDD02] Using the

JMCIS program, SPAWAR separated these common functions into the “Unified Build

(UB).” The UB packaged these common modules into a “Government Off the Shelf

46

(GOTS)” package with common Application Program Interfaces (API’s) for each

segment3. These API’s were standardized methods for programmers to access the

functionality contained in the UB. The net effect was for a given specialized C2 system,

the amount of work needed to deliver the required functions drastically decreased. To

accomplish a domain-specific mission, each developer had only to develop a segment

that then called the UB API’s for services. DISA took the UB to form the basis of the

Common Operational Environment (version 3.x). The UB also became the core system

for the Global Command and Control System – Maritime (GCCS-M).

JMCIS and the follow-on systems were appropriated and modified because they

were successful Naval C2 systems. However JMCIS’ development was not well

documented, and the requirements and design decisions surrounding JMCIS have never

been put to paper or studied. As evidence of this lack of developmental rigor, there is

still no delineation in the literature between GCCS-M and JMCIS. This is made clear in

the current (version 3.1.2.1) GCCS-M Segment Description Document, which has a

disclaimer that JMCIS terms may be seen throughout. [GSDD01] This lack of any sort of

documentation, especially of requirements and design decisions, hinders development of

interoperable systems.

4. Tactical Combat Operations (TCO)

In 1992, the Marine Corps Combat Development Command (the USMC

organization responsible for operational requirements) issued a Mission Need Statement

(MNS) for a ground C2 system. Specific needs were “…to receive, fuse, display, and

disseminate selected operational input from the MAGTF’s other C2 systems.”

[TMNS92, 1] The term “operational input” is not defined in the MNS, but it can be

surmised from context that the authors meant electronic data. Also inherent in this need

is the requirement for interoperability with the MAGTF’s other C2 systems. The authors

3 In JMCIS, GCCS, and DISA terminology, a “segment” is a particular function seen by the user.

A segment often has more than one software module, but provides a seamless interface to the user. For

example, the Joint Mapping Toolkit (JMTK) segment has a client software module and a server software

module, but the user only interfaces with the client module. [GSDD01]

47

further emphasized interoperability in the MNS by explicitly listing many current C2

initiatives that TCO had to interface with. Yet, many of these systems were “currently in

development” when the MNS was written. In the fire support area for example, an

interface was required with “Fireflex,” a system the Corps was to develop on its own.

[TMNS, 5] Fireflex was never developed due to lack of funding and the ultimate choice

of AFATDS as the Fire Support System of Record.

By 1995, the Marine Corps Combat Development Command had developed a

“Concept of Employment” (COE) for TCO that applied the TCO to the MEF down to the

Battalion and Squadron levels. [TCOE95] This tactical level of warfare was not well

served by the developing Global Command and Control System (GCCS), which was

more suited to the strategic and operational levels. By differentiating itself from GCCS,

TCO became a Program of Record and had its own funding and project office. Also,

GCCS was a joint project, and the Corps wanted control of this tactical system. The COE

again emphasized integration of TCO with other MAGTF C2 systems from the functional

areas of maneuver, fire support, intelligence, air operations, combat service support, and

Command and Control Warfare. By this time, the Operational Requirements Document

(ORD, generated by the Marine Corps Systems Command as an acquisition document)

listed a requirement for TCO to interface with AFATDS, with the interoperability

standard being reached by 3rd Quarter FY 1997. [TORD95, 7]. However, what

“interoperability” meant was not defined in any TCO document. In September 1995, the

TCO Integrated Program Summary had officially tied TCO to the JMCIS project.

[TIPS95]

48

From an operational standpoint, the connection between JMCIS and TCO is not

immediately apparent. TCO was supposed to meet the Ground Commander’s need for a

C2 system. JMCIS is a maritime system. These different environments have markedly

different requirements. Yet, there were several advantages. Parallel development

allowed the Marine Corps to save money when compared to an independent development

effort. Also, it was clear the Navy was serious about their own system integration in

JMCIS. JMCIS software was showing promise. This gave Marine leaders confidence

that the JMCIS project was viable. Finally, this was about the time that DISA began

mandating a Common Operating Environment, and so TCO was ahead of the game in

meeting joint requirements. TCO as deployed therefore became a subset of JMCIS

segments deployed on Common Hardware.

5. Intelligence-Operations Server (IOS)

The desire to integrate disparate systems continues. Even the use of language is

important in this initiative. The term “Intelligence-Operations Server” is descriptive of

where the Corps wants to go – one server at each maneuver unit that will “seamlessly”

support the commander’s information requirements and C2. In order to achieve this goal,

the intelligence functions contained in other programs such as the Intelligence Analysis

System (IAS) must be merged (on the same server) with TCO. Maneuver units do not

have a plethora of people to maintain systems, and having one server instead of two is an

obvious benefit. Also, the Marine Corps wants standardized hardware across the FMF.

See figure 10 below for an idea of the size of the current IOS hardware suite – 4 person

lift. The box contains the Sun Netra server.

Figure 10. IOS in a tactical environment.

In 2001, TCO became IOS (version 1). There is no Mission Needs Statement

(MNS) or Operational Requirements Documents (ORD) for the IOS. The Program

49

Manager instead uses the TCO Program of Record, ORD, and funding. [PECK02] The

Corps still receives funding for TCO, but it is spent on IOS. IOS (version 2) is TCO with

the addition of IAS. SPAWAR Charleston is the system developer for TCO, IOS, IAS,

and eleven other systems for the Marine Corps. Because the same center develops these

ground products, there is significant synergy between the different programs. The IOS

(Version 1 and 2) software runs on a Sun Netra 1125t Station. The operating system is

Solaris V. 2.5.1. There are no current plans for IOS to migrate away from Solaris.

B. OPERATIONAL REQUIREMENTS

This discussion focuses on IOS (v. 1) as fielded. The process used for

requirements will be to list a subset of the user requirements derived from the U.S.

Marine TCO ORD [TORD95] and TCO COE [TCOE95]. There are several problems

with this approach. First, the authors of the ORD and COE used the English language to

describe C2 concepts that are not easily described in words, while attempting to minimize

the respective documents. They were unable to accurately state what the system should

do. Few example C2 systems existed in 1995 for comparison. Second, C2 requirements

have evolved significantly since then, and there is no documentation extant today that

accurately lists current requirements. As with most computing systems, the user needs to

see a prototype before “it feels right.” When it comes to generating requirements, users

often say “they’ll know it when they see it.”

There is no history of program development. Therefore, one must use

engineering judgment to interpret what functionality is in the current software and

extrapolate back to the requirement that drove that functionality. From the derived

operational requirements, a UML model with Actors, Use Cases and Class diagrams will

be produced. Operational requirements are better understood in the context of the Marine

Corps tactical organization for combat. For readers unfamiliar with U.S. Marine Corps

Organization, Appendix B clarifies U.S. Marine combat and fire support relationships

and lists one scenario where IOS and AFATDS is used.

50

1. Selected User Requirements

The Requirements listed below are listed in a building-block fashion. The

primary requirement for a Common Operational Picture (vice just an Operational Picture)

is communication between nodes, so it is listed first.

User Requirement: Sub-Category Requirement
Number

Communicate Digitally • Establish Communications
• Manage Alerts
• Autoforward messages
• Filter incoming/outgoing messages
• Unicast data
• Broadcast data
• Manage Newsgroups

R1.1
R1.2
R1.3
R1.4
R1.5
R1.6
R1.7

Manage Text and Graphics • OPLANS
• Orders
• Messages
• Reports
• Presentations

R2.1
R2.2
R2.3
R2.4
R2.5

Manage Maps • Display DMA products
• Change scale

R3.1
R3.2

Manage Friendly Tracks • Update Locations
• Manage Track Data
• Correlate and aggregate Tracks
• Predict Future Locations (Routes)

R4.1
R4.2
R4.3
R4.4

Manage Enemy Tracks • Update Locations
• Manage Track Data
• Correlate and merge Tracks
• Predict Future Locations (Routes)

R5.1
R5.2
R5.3
R5.4

Manage Overlays • Add/Delete/update boundaries and
graphics

• Associate Overlays with OPLANs
• Activate/Deactivate Overlay
• Filter Units based on Overlay
• Send Operator Alerts based on
Unit/Overlay Interaction

R6.1

R6.2
R6.3
R6.4
R6.5

Table 6. Selected IOS User Requirements (After [TORD95], [TCOE95])

51

2. Actors

As explained in Chapter III, in the UML, actors are the people, things, or systems

that interact with Use Cases. They are external to the IOS system. In the military, and

thus in IOS, the same sequence of Actors is repeated for each level of the military

hierarchy. For example, there is a Battalion Commander and a Regimental Commander.

These are specializations of the Actor Role of “Commander.” These specializations are

reflected in the IOS when it is important for processing. The following table lists the

characteristics of the principal Actors in the IOS.

Actor Role Name Description Example Instances
Commander The commander role is that of the person

given responsibility and authority to
prosecute a campaign. The commander sets
warfighting policies that are then encoded
into IOS (an example encoding is overlays).
The commander expects the information and
data in IOS to be correct, and looks to IOS
for situational awareness.

• Battalion CO
• Regimental CO
• Division CO

Staff A member of the commander’s staff fills the
staff role. The staff is responsible for
implementing the Commander’s policy.
Staff provides human oversight of IOS
operations. At least one member of the Staff
serves as the COP Track Correlator (The
“TOP COP.”)

• Intel Officer
• Operations
Officer

• Logistics
Officer

Sensor The sensor provides the sensing function for
IOS. The sensor can be any human or digital
information provider.

• Reconnaissance
Team

• Artillery
Forward Observer

• Counter-fire
Radar

Friendly Unit A friendly unit is an actor because it is
external to IOS. IOS models friendly units,
but friendly units take independent action
and interact with IOS in many ways.

• Infantry
Company

• Artillery
Battalion

• Mortar Platoon
• Airplane

Table 7. IOS Actors

52

One or more IOS operators support each actor, and IOS servers are setup and

maintained by IOS administrators. These roles are critical to correct operation of IOS,

and their interaction with the IOS will be assumed for the remainder of this document.

Note that Friendly Units are actors, but in IOS, units are modeled as Tracks.

Second, Enemy Units are not Actors, because in normal operation, there is no interaction

between an Enemy Unit and IOS (they will not be entering data or initiating actions).

Friendly Units can be sensors but because of its importance to the Command and Control

process, the sensing function must be listed separately. Of course, sensors don’t have to

be units.

3. Essential Use Cases

Since there is no published IOS System Architecture, Use Cases must be

inferred. Figure 11 below depicts three of the high-level essential Use Cases for the IOS.

The IOS fulfills the requirements of these Use Cases. This evaluation will focus on the

first two Use Cases.

Figure 11. IOS Essential Use Cases

53

In the Use Case narratives below, the Requirement list is derived from Table 6.

USE CASE: Provide COP
Actors: Commander, Staff, Friendly Unit, Sensor
Purpose: Use IOS to accurately model the Operational Area.
Overview: This Use Case describes the steps necessary to prepare IOS for

use. Prior to entering this Use Case, IOS station
communications hardware must be set up. The user must
understand which nodes he wants to connect, and have the
detailed networking information needed in a typical TCP/IP
network.

Type: Primary and Essential
Cross References: R1.1-1.6, R2.1-2.4, R3.1, 3.2, R4.1-4.4, R5.1-5.4, R6.1-6.5
Actor Action System Response
1. This Use Case is initiated when a
particular IOS server is powered on.

 2. The system loads from an IOS CD-
ROM, containing the DII COE Unified
Build software and selected GCCS 3.x
segments. Loading takes 45 minutes. The
system presents a login screen.

3. The user logs in as sysadmin. The
administrator sets up networking by using
an “IOS configuration Wizard.” Entries
range from “Hostname” to “Primary DNS
Nameserver.”

 4. The IOS takes the information and
modifies the appropriate UB and GCCS
segments and Solaris files to set up
networking. Segment categories include
communications, database, and track
management segments.

5. The administrator configures the Track
Database Manager (Tdbm), which is a
server process residing on an IOS.

 6. The Tdbm segment is updated with the
master/slave configuration selected. The
Tdbm segment begins processing data.

54

7. The user sets up more network and node
data by editing the /etc/hosts and other
critical files. The user can use Ping or other
Solaris commands to verify connections.
The User modifies the Defense Data
Network (DDN) tables to set up network
topology.

 8. IOS is now ready to operate as a
network server for COP data.

9. Client stations and sensors create COP
objects (such as Tracks) and propagates
them by transmission in any of a number of
common message formats, including OTH-
Gold. Every attribute of a Track can be
modified as needed. Clients can filter COP
data at the workstation using overlays.

 10. Server segments process incoming
messages and broadcast or unicast
messages based on the network topology.

11. The senior Command becomes the
Track Correlator (the “TOP COP”). The
track correlator runs several segments that
allow him to merge tracks and ensure data
remains consistent within the network.

 12. The IOS integrated databases (Tdbm)
merge the tracks as required and presents
the COP.

ALTERNATE Courses: Step 12: If the server becomes unavailable, a server monitoring
process (the Joint Process Monitor) warns the client with an icon on the client’s screen.

Table 8. Essential Use Case Provide COP (IOS)

USE CASE: Command Forces
Actors: Commander, Staff, Friendly Unit
Purpose: Use IOS to send the information required to Command and

Control Forces. This Command and Control information
includes the tactical database, Operations Orders, plans, and
overlays, messages, and alerts.

Overview: This Use Case describes the steps involved in communicating
Command and Control information from one node to another.
The enemy situation is not part of this Use Case. The Use
Case “Provide COP” must be complete prior to entry into this
Use Case.

Type: Primary and Essential

55

Cross References: R1.1-1.7, R2.1-2.5, R3.1,3.2, R4.1-4.4, R6.1-6.3
Actor Action System Response
1. This Use Case is initiated when a user on
an IOS client machine (such as a workstation
running C2PC software) creates an
Operation Order, Plan, message, or alert.
The user uses the Joint Mapping Toolkit
(JMTK) to display mapping data. The user
creates written products and map overlays as
needed to produce an order.

 2. The C2PC software provides an
integrated set of tools to create the order.

3. The user selects the recipients. If the
client knows the address of the recipient, the
address is added. Otherwise, the user enters
the address, and sends the product.

 4. The C2PC software logs the message
and sends the message to the IOS. The
IOS resolves the addresses and sends the
products to the appropriate clients.
Messages are sent in common format.

5. The recipients receive the message on
their client. If they have set the alert criteria,
an audible alert is sounded signifying an
incoming message.

ALTERNATE Courses: None

Table 9. Essential Use Case Command Forces (IOS)

4. COP Network

The IOS meets the requirements and Use Cases listed above using a system

network overlaid on the military organization (see Appendix B for an example military

organization). From the perspective of an IOS at the Regimental Combat Operations

Center (COC), the IOS has relationships with other COC’s. The relationships are

defined by the information contained in the network routing tables. There is no

knowledge of which nodes are “higher” or “adjacent,” because the only information the

IOS has about them is their name and network address. Actors overlay meaning on the

nodes and set up broadcast and unicast forwarding patterns based on their perception of

how information should travel. IOS does know, however, which is the Track Database

Manager (Tdbm) Master station for COP synchronization, and that process is hidden
56

from the user in normal operation. There are other databases that have a similar

relationship between IOS nodes, but for brevity they are not mentioned by name.

Given the scenario in Appendix B, there is only one IOS, and that is at the

Regimental COC. The remainder are IOS clients. The regimental COC is the “TOP

COP” responsible for track correlation and track management. This requires active staff

participation via a “Track Correlator.” Figure 12 below depicts the IOS Network. In the

Figure, the COP network is carried over UHF frequencies by the Enhanced Position-

Location Radio System (EPLRS). This network is a point-to-point (unicast) network, but

will be a multicast network in the near future. At each of the Battalions, one C2PC acts

as a gateway for all the C2PC clients at the Battalion COC. The gateway is labeled as a

C2PC GW. (At the Artillery Battalion, the COC is called the Fire Direction Center –

FDC.)

Figure 12. Regimental COP Network

57

5. Derived IOS Classes

The pertinent objects in the IOS model are graphically depicted in Figures 13 and

14 below. The first Figure shows the overall concept for management and display of the

COP. There are more items in the COP that are not indicated and irrelevant to this

discussion. In the Figure, a “View” corresponds to a CTP or CROP. An “overlay,”

which has a collection of locations, modifies the COP to present the view. For instance,

an overlay could be a unit boundary. The boundary would have an outline, with the

outline being a collection of locations. The unit boundary could have properties set to

show only unit tracks inside the boundary. In this example, no ELINT tracks, nor any

other track besides unit tracks, would be displayed.

Figure 13. IOS COP

Figure 14 explores the concept of the Track. The “Track” has special significance

in the GCCS and IOS world, as it is the primary mechanism of object management in the

COP. Tracks are input into the COP either by manual entry at an IOS client or by

detection by a sensor. A sensing is called a contact, which contains information about the

Track and a position report at a given point in time. As shown in the figure, in IOS a

track contains a collection of contacts. In this diagram, only the tracks relevant to ground

operations are listed.

58

Figure 14. IOS Track Class.

The following Table lists all the major Track types defined in IOS, and their

primary use. The first column, “Track identifier,” is a one-character code located at the

first position in the Track Identification number (Track ID). The Track ID is used on the

local machine to identify tracks. [CHBK95, 24]. The alert reader will notice that there

are several inclusive Track identification schemes at work in the track classification

scheme. Indeed, a track can have several different sources of contact information. For

instance, a ground unit can have an ELINT or COMINT hit, but still be classified as a

unit track. This can be a source of confusion. Further, the majority of tracks on any

particular IOS will be external, but may not be so indicated in the Tdbm. Finally, several

of these Track Types are for systems that are no longer deployed. The Track ID is an

internal number. It does not necessarily bear any relation to the physical world object the

track represents. In other words, there is no independent, objective way to identify Track

ID’s from the characteristics of the item being represented. The one-character code may

provide some information about the initial source of the report, and an operator can infer

from the sensor what type of object it is. This ambiguity about the Track ID is a

stumbling block to sharing track data with non-IOS systems such as AFATDS.

59

Track Identifier Track Type Purpose
A Ambiguity Track doesn’t fit one of the other

classes.
B Acoustic Produced from Acoustic sensors.
C Special Intelligence/Comint Produced from classified sensors.
E Emitter/ELINT Produced from classified sensors.
F Submarine Fire Control

Systems (FCS)
Produced from Submarine FCS
sensors.

L Link-11, Link-14, Link-16 Produced or received from Tactical
Data links.

N Near Real-Time Produced from classified sensors.
R RAYCAS(V) Produced by a Raytheon shipboard

Radar, first introduced in 1981.
S SPA-25(G) Produced by the SPA-25(G) radar

sensor.
T Platform Represents a ship.
U Unit Represents a ground unit.
X External Received from an external source.

Table 10. IOS Track types. (After [CHBK98, 24-26]).

The preceding diagrams and discussion may have given the reader the impression

that the COP is static. However, the COP is being updated all the time, from every

sensor that feeds the system. Yet the processes that make that happen are in the

background, other than for the “TOP COP,” who is charged with ensuring the COP is

consistent given all current data. While it is not static, the COP as implemented on IOS

is an information source rather than a decisonmaker, in that it provides information to the

commander for him to act. In terms of the OODA loop, IOS doesn’t “Decide” on the

data, it only supports the commander in deciding and acting. This paradigm is different

than that of AFATDS, which in “automated” modes will cause ammunition to fly

downrange without human intervention.

6. Interoperability Requirements

Interoperability requirements were listed in the TCO ORD and COE in 1995.

Specifically, these documents enumerate a requirement for TCO to be interoperable with

all the DoD communication protocols and message formats then current. These

communication standards include Over-The-Horizon – Gold (OTH-Gold) messaging,

TCP/IP, and Ethernet for Local Area Network communications. The ORD also requires

60

interoperability with several named systems, to include AFATDS, IAS, JMCIS, the

DACT, and GCCS. Again, “interoperability” is not defined. At least one Program

Officer has interpreted “interoperability” to mean “Can exchange one or more bytes of

information.4” [KUBI01] This inadequate definition of critical interoperability

requirements has led to inadequate implementation.

At this point, IOS is the de-facto “build-to” Marine Corps tactical system, known

as the System of Record (despite receiving all funding from the TCO and IAS programs).

IOS has reached its current stage via evolution. As a consequence, the IOS is the system

to which other systems must interface, not the other way around. Since IOS has the

Unified Build and a standard set of API’s, other system developers, such as those on the

AFATDS project, have specified the AFATDS/IOS interface. Further, middleware

vendors can write software that interfaces with a given version of IOS and can expect to

have a reasonable amount of success – until either the IOS or other system version

changes. Version changes happen about every eighteen months, while “patches” (minor

software fixes) occur more frequently.

C. IOS IMPEMENTATION ISSUES

1. Software Development

IOS has no current Requirements Document, no requirement for artifacts such as

help manuals or other documentation, and no development plan beyond what the current

Project Officer proposes. The Operational Requirements were originally written for TCO

software in 1995. With no current operational requirements document, it’s hard to hold

system developer’s feet to the fire for not meeting requirements. SPAWAR Charleston

has limited history on how the software got to where it is today, and the typical answer

for this lack of information is that the system is really “GCCS-lite” – go talk to the joint

people. Meanwhile, the Joint community is worried about the three different flavors of

GCCS that they are required to interoperate with, and continually slipping back on their

4Captain Kubicki surmised this to be the requirement actually implemented, based on program

decisions prior to his assignment as MARCORSYSCOM AFATDS project officer in 1999.

61

timelines for producing version GCCS 4.x (originally slated for release in 1999, and still

not released.) However, based on reports from the Fleet Marine Force, IOS is a

successful system in that it meets the requirements of the Use Cases presented above.

The evolutionary strategy of combining software programs is a valid one for the Marine

Corps. This permits the deployment of more capability using less hardware.

2. Support to the Fleet Marine Forces

A particularly vexing problem with IOS and similar systems is their complexity

and lack of reliability. The requirement for extreme mobility produces cascading

negative effects on the IOS. Many problems stem from mobile networking issues, but

other issues are lack of robust hardware and the inability to connect reliably over long

distances without wires. Second, the machines are not completely reliable. Although

these systems have become more reliable, and identifying an exact source of troubles is

difficult, the response of the Fleet has been to hire “TechReps” (contractors) to care for

the machines in the field. While effective in the short term, this is not an optimum

solution, because it exposes civilians to needless risks while forcing the Marine Corps to

lose a boatspace for a combat-ready Marine. From a contracting point of view, the more

systems are in the field, the more contractors from the original program are needed. In

other words, four systems fielded results in Corps-wide costs for four contractors from

four different companies.

3. Future Capabilities

IOS software is tied to GCCS. Therefore future capabilities will mirror that of the

GCCS program. The next GCCS software version is version 4.x. GCCS 4.x has a quite

different internal structure from Version 3.x. This different structure is one of the reasons

the Initial Operational Capability date has slipped from 1999 to (possibly) early 2004.

This version has the following planned capabilities:

• Ensure all GCCS 3.x functionality is retained.

• Ensure previous patches and fixes from version 3.x are supported.

• Provide a Microsoft Windows 2000 client.

62

• Provide a Microsoft Windows “look and feel.” This requirement decreases training
costs.

• Support network and remote installation.

• Integrate an internal XML data scheme.

Tying IOS to GCCS is an appropriate choice for a system designed to manipulate

the COP. IOS is DII COE level 8 compliant. What is more important is that the Marine

Corps accurately define the requirements for the COP at the tactical and operational

levels of war. The Corps must further ensure that these requirements are met not only in

IOS, but GCCS as well. The issue of whether the GCCS data model (i.e., the “Track”

paradigm) is sufficient for ground combat will be dealt with in the interoperability

requirements chapter.

63

THIS PAGE INTENTIONALLY LEFT BLANK

64

V. THE ADVANCED FIELD ARTILLERY TACTICAL DATA
SYSTEM (AFATDS)

AFATDS is the digital C2 Program of Record for the fires functional area. It

coordinates employment of ground, air, and sea based fires to support maneuver units.

AFATDS analyzes available fire support assets and applies commander’s guidance to

attack targets based on an optimal fire support solution. AFATDS was designed for and

fielded to the tactical and operational levels of the U.S. Marine Corps. Therefore,

AFATDS is fielded from the artillery battery to the artillery regiment and at the supported

infantry headquarters from battalion to Marine Expeditionary Force (MEF).

AFATDS is the latest step in fire support C2. Among the earliest uses of

computers was the calculation of firing tables for artillery projectiles. Nothing in these

older systems could be considered “user-friendly,” and the artillery community learned to

adapt the man to the machine in order to get the desired result of accurate predicted fires.

The history of the development of fire support systems is germane to the current

AFATDS system, as it provides context for the requirements for the AFATDS system.

A. HISTORY

1. The Gunnery Problem

In order to ensure accurate predicted indirect fires, five elements must be

accounted for in the solution. These elements are: accurate information about the

projectile and propellant, accurate weapons information, accurate target and weapon

locations, accurate meteorological information, and accurate computational procedures.

From the earliest days of artillery, mastery of these five elements ensures effective fires

on the enemy. Early automated solutions focused on “accurate computational

procedures,” but as systems continue to grow in power and shrink in size, automated

systems increasingly are involved in the other four elements, which require accurate

sensors. These five elements together are termed “technical fire direction,” as they

contribute to actually getting steel on target.

65

A further goal of automation is the solution of “tactical fire direction.” Tactical

fire direction solves the problem of fires employment and answers the questions of why

are we firing, who will fire, what type of fires needed, and how much fires are needed for

a given level of effect. Tactical fire direction can be summed up as “Decide, Detect,

Deliver, Asses (D3A).” First, the commander decides what are his priority targets. Then

surveillance assets (sensors, including observers) detect those targets. Once detected, the

appropriate type and amount of fires for the desired effect is delivered to the target.

Finally, the effects are assessed and the cycle is repeated if the desired effects have not

been achieved. Tactical fire direction requires much more information from many more

widely dispersed sources than that needed for technical fire direction, and is the harder

problem to solve.

2. Field Artillery Digital Automatic Computer (FADAC)

FADAC was developed in 1959 by Autonetics, a subsidiary of North American

Aviation, Inc. FADAC was the first deployable digital system designed to accurately

solve the technical fire direction problem (See Figure 15). An operator in the Fire

Direction Center (FDC) would enter data by using a matrix of rows and columns of

switches, with values stored at the intersections. Meteorological data could be entered

using punched paper tape. Once all the data was stored (consisting of the other four

elements of accurate predicted fires), pushing a button solved the differential equations

for the projectile, and weapon-aiming information was displayed “in decimal form.”

[BRLA61, 254] Apparently, the designers thought the display of decimal numbers over

binary or hexadecimal numbers was a selling point.

66

Figure 15. FADAC terminal. (From [BRLA61, 254])

 FADAC relieved the artillery community of several laborious and error-

prone steps in calculating firing data, and greatly improved field artillery support in

Vietnam. [DAST92] Yet, FADAC left a lot to be desired. The operator had no way to

check for incorrect data entry, so manual methods were used as a backup to verify the

automated solution. There was no automated communication to the firing platform, and

limited communication between various command and control nodes. FADAC had no

method for conducting Tactical Fire Direction. FADAC was common in Army and

Marine units from 1960-1980.

3. TACFIRE

TACFIRE (an acronym derived from TACtical FIRE direction) was developed in

the late 1960’s by Litton Data systems as technology continued to progress. [LITT00]

Besides using the newest digital technologies to reduce weight, power consumption, etc.,

TACFIRE was the first system to network the various Fire Support agencies such as the

FDC and Fire Support Coordination Center (FSCC). TACFIRE automated several of the

manual processes for both technical and tactical fire direction. As fires generally have to

be cleared by the unit responsible for the area in which the fires are called, this

automation greatly speeded the delivery of fires. TACFIRE digitized information from

radars and meteorological stations, again providing a direct benefit to the field artillery.

[DAST92] TACFIRE was deployed at various levels in the Army from 1977 – 1996.

67

However, problems with TACFIRE kept the Marines from acquiring it.

TACFIRE was a large system, straining transportation networks. It was not designed to

operate while moving, a critical requirement for the Marines. TACFIRE used a

proprietary, fixed format, character-oriented message set.5 Communications rates were

slow - between 150-2400 bps. Then current radios were designed to support voice

communications. Because of the number of the TACFIRE devices deployed, other

devices were required to conform to the TACFIRE communications standard for

TACFIRE communications. The Forward Observer (FO) still did not have a method of

entering missions digitally, requiring him to use voice circuits to the battery FDC to send

in fire missions. Finally, although the TACFIRE interface was better than FADAC, few

human factors were considered.

4. BCS/LTACFIRE/IFSAS

Because of its size, the Marines did not field TACFIRE. Instead, the Marines

acquired the Battery Computer System (BCS) and began a parallel development effort

called the Marine Integrated Fire and Air Support System (MIFASS). After a short

while, the technical complexity of the Fire Support challenge became clear, and the

Marine Corps settled for the capabilities of the BCS. The BCS was the portion of

TACFIRE residing at the firing batteries that solved the problem of technical fire

direction. The BCS calculated firing data for each gun in the battery, producing better

target effects. The BCS communicated digitally with other BCS computers, TACFIRE

devices, Forward Observer devices, and the gunline. The BCS could continue to operate

while moving. The prime contractor was Litton Data Systems, while Telos Corporation

wrote the software in Ada. The Corps also procured several handheld computers for use

as a backup to the BCS.

Meanwhile, in the mid eighties the Army began deploying Light TACFIRE,

which was TACFIRE software ported to smaller hardware, for their light divisions.

Operations in Southwest Asia were conducted with a mix of TACFIRE and LTACFIRE,

interoperating with TACFIRE protocols over voice radios. After Desert Storm and as

5 Later versions supported an improved Variable-Format Message set. [WATK02]

68

hardware continued to get cheaper and more powerful, the Army and Marine Corps

began fielding the Interim Fire Support Automated System (IFSAS). IFSAS was

designed to be a stopgap C2 system until AFATDS could be fielded. IFSAS was again

TACFIRE software ported to a new hardware platform known as the Lightweight

Computer Unit (LCU).

5. AFATDS

During the late 70’s, the Department of the Army began looking for a replacement

for TACFIRE. Specific goals were to effectively apportion limited fire support assets to

targets, integrating the scheme of maneuver with fires to produce the largest effects on

the enemy. In effect, this would completely automate the tactical fire direction process.

In 1981, the Army approved a plan to develop the Advanced Field Artillery Tactical Data

System, with fielding scheduled for the early 1990’s. [DAST92] It is interesting to note

that the Army, thinking ahead, planned so much time for AFATDS development. Yet in

the end, even this amount of time was insufficient for fielding. The first version of

AFATDS software was released in 1996.

The initial AFATDS contract was awarded to Magnavox Electronic Systems, Fort

Wayne, Indiana. Development of AFATDS was anything but smooth. The Field

Artillery community wanted a system that would meet all the requirements of a high

threat, target rich scenario such as the defense of NATO. Such a defense would require

automated tactical fire direction of a scale unseen in then current fire support systems.

[WATK02] Therefore, there were extensive requirements to automate the entire fire

support problem. Further, technology was moving along at a rapid pace, and as the Field

Artillery community saw better emerging technologies, they wanted more capabilities.

There were also significant design challenges. First among the challenges was the

marked lack of bandwidth in the tactical arena. The majority of communications at the

Marine Regiment and below is via FM voice radio, which is not optimal for digital

communications. Second, each AFATDS node is required to maintain common

databases in order to ensure synchronization between nodes, requiring significant

computational power and complicating replication issues. Finally, automated fire

69

mission processing required digitized sensors and shooters in a networked environment,

which is a significant task even with perfect communications. One 1994 report from the

Department of Defense Inspector General’s Office was particularly damning:

The AFATDS program is not ready to proceed into the production and
deployment phase of the acquisition process. The AFATDS software to
be deployed lacks critical capabilities necessary to fulfill user
requirements, including communication with other user systems.
Subsequent versions of AFATDS software, potentially capable of meeting
user requirements, do not have a dedicated engineering and manufacturing
and development phase to achieve production hardware and software
configurations suitable for deployment. As a result, the Army could spend
$187.2 million for hardware that does not meet requirements, spend $4.6
million for an initial operational test and evaluation that will not prove
AFATDS ready for fielding, experience further delays in the development
of software, field software that does not meet user requirements, and
support two systems [IFSAS and AFATDS] to accomplish the same
mission. [DDIG94]

Despite this negative assessment, the Artillery community continued to support

AFATDS, as there was no other choice. To help mitigate the problems mentioned above,

the Program Manager and system developers agreed on an iterative software

development model, instead of the waterfall model used previously. Each iteration would

offer more functionality than the last. The program was also helped by advancing

technology, both in communications systems and in the computing power available.

Although the software versions were originally numbered starting with version 1,

they were changed to reflect the year of expected release. Version A96 was the first

fielded, followed by versions A97 and A98. These versions were also delayed such that

there is now no longer a correspondence between the version number and the year of

issue. Version A98 (the version shown on the display in Figure 16 below) is the fielded

version. Version A99, which is being fielded now, will be the first version to offer

technical fire direction, replacing the BCS at the Firing batteries. Despite the painful

development history of AFATDS, the Field Artillery community has come to view

AFATDS as an essential fire support system.

70

Figure 16. AFATDS Workstation (From [APIC02])

B. OPERATIONAL REQUIREMENTS

 For various reasons, both operational requirements and software versions change

frequently. The process used to list the requirements will be to list a subset of the user

requirements derived from the version 2.1 (A99) System Segment Specification

[FSSS00], and the U.S. Marine Operational Requirements Document [AORD00], list the

system actors, derive the Essential Use Cases, and provide collaboration and class

diagrams. Operational requirements are better understood in the context of the Marine

Corps tactical organization for combat. For readers unfamiliar with U.S. Marine Corps

Organization, Appendix B clarifies U.S. Marine Fire Support relationships and lists one

scenario where AFATDS and IOS could be used.

1. Selected User Requirements

AFATDS is a complex system – the User’s manual is in four volumes with nearly

1000 pages. [AHLP99] Therefore, the following table provides a small but relevant

subset of the AFATDS system requirements as articulated in Chapter 3 and Appendix I of

the AFATDS Version 2.1 System Segment Specification. [FSSS00] These requirements

were selected based on relevance to the Fire Support mission. The “requirement number”

71

listed here does not correspond to any AFATDS artifact, and is used for tracking the

requirement in this document.

72

User Requirement AFATDS Process Requirement
Number

Communicate Digitally • Establish Communications
• Manage Alerts
• Autoforward Messages
• Filter Incoming/Outgoing Messages
• Unicast/Broadcast Data

R1.1
R1.2
R1.3
R1.4
R1.5

Maintain Accurate Friendly
Unit Information

Create/Edit
• Friendly Unit Information
• Friendly Geometry Information
• Friendly Unit Disposition

R2.1
R2.2
R2.3

Maintain Accurate Enemy
Unit Information

Create/Edit
• Enemy Unit Information
• Enemy Unit Geometry Information
• Enemy Unit Disposition

R3.1
R3.2
R3.3

Maintain Accurate
Battlespace Information

Create/Edit
• Battlefield Geometries
• FSCM Geometries

R4.1
R4.2

Develop and Apply
Commander’s Guidance
(DECIDE)

Create/Edit Guidance Data
• Attack guidance
• Target Guidance
• Command and Control Guidance
• Trigger Event Criteria

R5.1
R5.2
R5.3
R5.4

Process Combat Information
(DETECT, ASSES)

• Generate Targets
• Process Targets
• Filter Targets

R6.1
R6.2
R6.3

Deliver Fires (DELIVER) Attack Analysis
• Maintain Unit List
• Determine Mission Requirements
• Perform Geometry Checks
• Determine Recommended Attack
Option

• Perform Mission Coordination

Conduct Mission
• Determine Controlling Unit
• Compute Ballistic Data

R7.1
R7.2
R7.3
R7.4

R7.5

R7.6
R7.7

Collect Combat Information
(DETECT, ASSES)

Interoperate with External Systems
Data Distribution
Create/Edit Enemy Unit Information

R8.1
R8.2
R3.1-3.3

Table 11. AFATDS User Requirements (After [FSSS00])

2. Actors

In the UML, actors are the people or systems that interact with Use Cases. In the

military, and thus in AFATDS, the same sequence of Actors is repeated for each level of

the military hierarchy. For example, there is a Battalion Commander and a Regimental

Commander. These are specializations of the Actor Roles. AFATDS makes distinctions

between the various specializations when it is pertinent to completing the actions in the

Use Cases. Specifically, distinctions are made in the Fires Coordinator, Observer, and

Firing Agency Roles. The following table lists the characteristics of the principal Actors

in the AFATDS system.

Actor Role Name Description Example Instances
Commander The commander role is that of the person

given responsibility and authority to
prosecute the campaign. The commander
sets fire support policies that are then
encoded into AFATDS. The commander
expects the information and data in AFATDS
to be correct, and looks to AFATDS for
situational awareness of fires issues.

• Battalion CO
• Regimental CO
• Division CO

Fires Coordinator A member of the commander’s staff fills the
Fires Coordinator role. The Fires
Coordinator is responsible for implementing
the Commander’s policy. He ensures that
targets are correctly identified and assigns
fires based on mission priorities. He
provides human oversight of AFATDS
operations.

• Artillery
Battalion Liaison
Officer

• Artillery
Battalion
Operations Officer

• Fire Direction
Officer

Observer The observer provides the sensing function

for AFATDS. The observer interfaces
directly with AFATDS using a message
entry device and digital communications

• Artillery
Forward Observer

• Counter-fire
Radar

73

equipment. If digital equipment is not
available, the observer can call for fire using
voice transmission over radio, and an
AFATDS terminal operator will enter the
mission.

Firing Agency Any asset capable of delivering ordnance. • Artillery
Battalion

• Mortar Platoon
• Naval Gunfire
Ship

• Airplane
Table 12. AFATDS Actors

Each actor is supported by one or more AFATDS operators, and AFATDS

workstations are setup and maintained by AFATDS administrators. These roles are

critical to correct operation of AFATDS, and their interaction with the AFATDS will be

assumed for the remainder of this document. It is important to note that a Firing Agency

is considered an actor because it is outside AFATDS. However, inside AFATDS, this

actor is modeled as a “friendly unit” object with high fidelity.

3. Essential Use Cases

Figure 17 below depicts four high-level essential Use Cases for the AFATDS

system. AFATDS currently fulfills the requirements of these Use Cases. The first three

Use Cases are modeled.

74

Figure 17. AFATDS System Level Use Cases.

The three most critical Use Cases are listed in the tables below. These Use Cases

fulfill the Requirements set forth in the Requirements noted above (Table 11), as noted in

the Use Cases.

USE CASE: Provide COP
Actors: Commander, Fires Coordinator, Firing Unit, Observer
Purpose: Use AFATDS to accurately model the Operational Area.
Overview: This Use Case describes the steps necessary to prepare

AFATDS for use by establishing the tactical database. Prior to
entering this Use Case, AFATDS station communications
hardware must be set up.

Type: Primary and Essential
Cross References: R1.1-1.4, R2.1-2.3, R3.1-3.3, R4.1-4.3
Actor Action System Response
1. This Use Case is initiated when a
particular AFATDS workstation is turned on.

 2. The first AFATDS powered on in an
Operating Facility (OPFAC) becomes the
master AFATDS. AFATDS loads the
previously stored OPFAC configuration
and databases.

75

3. The operator verifies the previously stored
OPFAC configuration or changes the data if
needed. The operator chooses the role of
this particular OPFAC from the following
menu: FSE/FSCC; FA CP/FDC; FU (Firing
Unit); IUC (Independent User Center).

 4. AFATDS takes the new configuration
data. AFATDS loads the appropriate
software to meet the requirements of the
chosen role. If the role selected is IUC,
AFATDS loads only a portion of program
software.

5. The operator edits the Master Unit List
(MUL), if desired. The MUL is the listing of
all friendly units in the theater that have the
capability to communicate with AFATDS,
whether they are AFATDS machines or
machines designed to interface with
AFATDS. The MUL contains unit names
along with their identifying information and
communications parameters.

 6. AFATDS changes the MUL.
7. The operator enters the authorized system
users.

 8. At this point, the AFATDS master
station allows other AFATDS
workstations to power up. AFATDS
allows other users to login.

9. The operator assigns one or more duties
to that particular AFATDS machine from the
following menu: System Administrator,
Communications Administrator, Message
Monitor, Mission monitor. The operator
creates communications and distribution lists
that meet the requirements of the tactical
scenario. The operator enters friendly unit
information of the units controlled by that
OPFAC.

 10. Each AFATDS assumes the duties
required. The AFATDS OPFAC gleans
information about higher, adjacent,
supporting, and supported unit
relationships based on the operator
entries.

76

11. The AFATDS operator enters
geographic information and battlefield and
enemy data as needed to update the common
operational picture.

 12. AFATDS takes this data and
correlates it with other incoming COP
data from other Operating Facilities.
Friendly data is correlated using the
MUL. AFATDS data is shadowed as
necessary between master and slave
workstations in the same OPFAC.
AFATDS displays a view of the COP
when requested. The user can change the
view by filtering the data.

ALTERNATE Courses:
Step 1: If an AFATDS machine is not the first powered on in an OPFAC, it becomes a
slave machine and AFATDS automatically shadows databases. Slave machines cannot
edit the MUL or perform other system administration functions. Slave machines can
execute steps 1 and 8-12 of this Use Case.
Step 3: If the AFATDS operator changes the unit information, AFATDS loads a default
database. This can cause significant disruption if the operator expected all other tactical
data to remain the same.
Step 5. The MUL must be the same across all AFATDS at all OPFACs. The AFATDS
developers recommend that only one unit (the senior unit) modify the MUL and that all
other AFATDS units import that MUL from a disk.

Table 13. Essential Use Case - Provide COP (AFATDS).

77

USE CASE: Define Fire Mission Criteria
Actors: Commander, Fires Coordinator
Purpose: Prepare AFATDS to automatically process fire missions
Overview: This Use Case describes the steps necessary to prepare

AFATDS for mission processing by establishing
Commander’s Guidance. Prior to entering this Use Case, an
AFATDS workstation must be initialized as described in the
Use Case “Provide COP.” In particular, the MUL must match
among all AFATDS stations. Further, the AFATDS role must
be defined.

Type: Primary and Essential
Cross References: R4.1-4.4, R7.1-7.2
Actor Action System Response
1. This Use Case is initiated when the
Commander defines Fire Mission Criteria.
These criteria are stated in the form of fire
mission processing rules and Commander’s
guidance for fires. Typical guidance
includes fire mission type priorities and
targeting priorities by target class (i.e., fire
on threat C2 nodes immediately when
identified but don’t shoot supply sites). The
operator enters this information into
AFATDS.

 2. AFATDS takes the data as guidances
and rules, and stores it into multiple
“mission selection criteria” data tables.

3. The operator enters types and locations of
friendly fire support units. The Fire Support
Coordinator enters amounts and types of
ammunition available by unit.

 4. AFATDS takes the data and stores it
into multiple “firing unit” tables.

5. The operator defines battlespace
geometry in terms of restrictive and
permissive FSCM’s, by location.

 6. AFATDS takes the data. During the
Use Case “Conduct Fire Mission”, it will
check the target grid against this data for
possible violations of geometry
constraints.

7. The operator enters all current observer
locations. The operator defines how
observers will connect to the AFATDS
network.

78

 8. AFATDS takes the data and stores it
for use. Observers are treated as units by
AFATDS.

ALTERNATE Courses:
Step 4: If other AFATDS OPFACs have unit information, after a communications path
has been established, the OPFACs will update unit information between them. This
includes information about location and ammunition available.

Table 14. Essential Use Case – Define Fire Mission Criteria. (AFATDS)

USE CASE: Conduct Fire Mission
Actors: Observer, Fires Coordinator, Firing Unit
Purpose: Deliver fires on targets.
Overview: This Use Case describes the steps necessary for AFATDS to

deliver fires on targets of opportunity. This Use Case
describes the primary functionality of AFATDS.

Type: Primary and Essential
Cross References: R1.1-1,3, R2.1-2.3 R5.1-5.3, R6.1-6.7, R7.1-7.2
Actor Action System Response
1. This Use Case is initiated when an
Observer calls for fire using a digital device.
The observer has a wide range of choices.
He chooses to call a “Fire For Effect-When
Ready” mission. This means that the firing
battery is responsible for firing when it is
ready, not at any command of the observer.

 2. The receiving AFATDS OPFAC
verifies validity of the Call for Fire Grid
and other data. AFATDS assigns a target
number to the target. AFATDS compares
the “suspect target” to target selection
standards and determines attack
precedence. AFATDS filters the target,
checking for target duplication. AFATDS
routes the Call for Fire to a Fires
Coordinator OPFAC based on target
location and other properties.

3. The Fires Coordinator checks the target
location against known friendly locations
and other parameters. The Fires Coordinator
AFATDS system approves or denies the Call
for Fire.

79

 4. AFATDS determines which unit can
range the target, has the appropriate
ammunition, and is available for missions.
AFATDS sends the mission to that Firing
Unit. AFATDS sends a message to
observer telling the Observer what to
expect from which Firing Unit.

5. The Observer acknowledges receipt of
the message to observer.

6. The Firing Unit acknowledges receipt of
the mission.

 7. The Firing Unit AFATDS process the
Fire Mission by conducting technical Fire
Direction and sending the appropriate
commands to the gunline. The guns fire.

8. The observer observes the effects on the
target and ends the mission. The observer
sends a message containing tactical
intelligence about the effects on the target.

 9. AFATDS sends an End of Mission
message to the Fires Coordinator and the
Firing Unit. AFATDS saves the tactical
intelligence from the mission and updates
the COP. AFATDS updates the Firing
Unit information by decrementing the
amount of ordnance expended from the
Firing Unit.

ALTERNATE Courses:
Step 1: If the observer doesn’t have a digital device or loses digital connectivity, the
observer will use voice transmission to reach the appropriate AFATDS operator, who
will enter the mission into AFATDS. In either case, the AFATDS processing steps are
the same.
Step 3: This step can be done automatically or manually. Current USMC practice is to
have a “man in the loop,” so this check is shown as an Actor action, with communication
via the AFATDS system.
Step 4: If the Mission is Denied, AFATDS sends a Message to observer stating that, and
saves the target for later processing or analysis.
Step 8: The Observer can choose to adjust the fall of shot based on demonstrated lack of
effect on the target, or can repeat the mission if more effects are needed. In these cases,
processing loops to step 4.

Table 15. Essential Use Case – Conduct Fire Mission (AFATDS)

80

4. AFATDS Network

AFATDS meets the requirements listed above using a system network overlaid on

the military Fire Support Structure (see Appendix B for an example scenario). From the

perspective of any OPFAC, the OPFAC has relationships with higher, adjacent,

supporting, and supported nodes. These roles are not required to be filled (the highest

node has no “higher” relationship), but when filled, define what messages are sent and

when they are sent. Although AFATDS is truly a “Fire Support” system, it has

traditionally been viewed as an artillery-specific system, and therefore artillery serves as

the example agent providing fires. Typical OPFACS are the infantry Regimental COC

and the Artillery Battalion FDC. Figure 18 below shows the AFATDS logical network

that would be used for the scenario listed in Appendix B. Using this example, there are 9

FO teams, 3 Infantry Battalion FSCC’s, one artillery Battalion FDC, and three battery

FDC’s.

Figure 18. Example Infantry Regimental AFATDS logical Network.

81

5. Derived AFATDS Classes

Recall from chapter III, a Class is the term for objects that share the same

characteristics. For example, FriendlyUnit is a class, while a particular friendly unit (say

3rd Battalion 11th Marines) is an object (also called an Instantiation) in the class. Classes

can have attributes and methods, where attributes describe objects and methods are the

activities that the class participates in. In AFATDS software, class attributes are the row

and column names stored in a relational database, while the values of a given attribute are

stored at the intersection of the rows and columns in the database. Methods are not

explicitly given to classes, since AFATDS was originally not designed using object

orientation. The purpose of using classes to describe AFATDS is that it allows a more

explicit picture of the order of operations to be derived in the sequence diagrams that

follow. The following diagrams graphically depict the classes derived from the Use

Cases above.

Diagrams 19 and 20 below depict Classes involved in the Use Case “Provide

COP.” Of note on these diagrams is the change in an AFATDS workstation to an

AFATDS OPFAC while powering up. This change limits functionality while preparing

the AFATDS to perform the appropriate OPFAC role in mission processing. Next, in

AFATDS, an Enemy Unit is a separate concept from a target. In fact, a target can be any

location or set of locations, no matter what is actually there. A Suspect Target is

unprocessed, incompletely specified, or found not to meet target selection standards.

Also note that in AFATDS, a geometry is 30 or fewer locations.

Enemy units are processed and viewed differently than friendly units, and Firing

units contain significantly more information than other units in order for AFATDS to

pick an appropriate firing unit, manage Firing Unit ammunition, and control movement.

82

Figure 19. AFATDS OPFAC Class

Figure 20. AFATDS Provide COP

The new concepts of guidance introduced in the Use Case “Define Fire Mission

Criteria” are shown in Figure 21. In AFATDS there are actually 6 different types of

guidance, but these three are the ones most used for mission processing. Important

concepts here are that AFATDS processes fires for all types of Fire Support Assets, and

83

that attack guidance is contained in the FS_Atk_Guidance (“FS” stands for Fire Support).

FA_Atk_Guidance represents Field Artillery specific attack guidance, while

Target_Guidance provides the criteria for target processing. In the D3A cycle, target

selection and processing is the key element in ensuring the Commander’s Intent for fires

is met.

Figure 21. AFATDS Guidance Classes

The final Use Case, “Conduct Fire Mission,” does not introduce any new classes.

It will be treated in the next section using a UML Sequence Diagram.

6. Use Case “Conduct Fire Mission” Sequence Diagram

84

As discussed in the UML Chapter, a UML sequence diagram emphasizes the

actions a system takes to accomplish a task. The sequence of interactions between

objects establishes a clear timeline. Although events may occur concurrently, event start

and end times are explicit. The Use Case “Conduct Fire Mission” is a prime candidate

for this treatment. No new classes are introduced. In a sequence diagram, Actors are

represented outside the system boundary, while objects (not classes) are inside the system

boundary. In this Use Case, the “system” is the complete AFATDS network. The

pertinent actors are the observer and the Firing Agency. To simplify the Use Case, we

will assume that no operator intervention criteria have been set, i.e., AFATDS is in

automatic processing mode. The Fires Coordinator and Commander both have

contributed to the COP and guidance, but their actions are performed by AFATDS when

AFATDS processes missions automatically.

Figure 22. Use Case “Conduct Fire Mission” Sequence Diagram

85

The observer starts the action by sending a Fire Mission on a Suspect Target. The

FSCCRole AFATDS processes the mission using the guidances indicated in the note in

the Figure. Processing is fast – usually a few milliseconds up to a second. When the

Suspect Target is approved, it becomes a Target, and the FSCCRole AFATDS sends a

fire mission to the FDCRole AFATDS with the target data. The FDCRole AFATDS

sends an “Order to Fire” to the FiringAgencyRole AFATDS at the Firing Unit (note the

firing unit is outside the system boundary to the right). The FiringAgencyRole

AFATDS sends fire commands down to the gunline. The FiringAgencyRole AFATDS

sends a message back to the observer telling him what to expect (number of rounds,

target number, and other information). This message is repeated through the network

back to the observer. The “Ready,” “Shot,” and “Rounds Complete” messages are

internal to the firing agency processing with the FiringAgencyRole AFATDS, but the

guns are firing. The observer sees the fall of the rounds, and decides to end the mission.

The “End of Mission” message he sends is echoed throughout the AFATDS network, and

mission processing is complete. The Firing Unit sends a “Ready” message back to the

AFATDS network, signifying readiness for further missions.

C. INTEROPERABILITY REQUIREMENTS

1. Overview

When AFATDS was being developed in the 1980’s, the biggest interoperability

concern was with legacy systems such as IFSAS and TACFIRE. The majority of ORD

interoperability requirements addresses these fire support-specific systems. In the

1980’s, AFATDS was the cutting-edge in the ground C2 arena, and other C2 systems

were either undergoing testing or still being designed. Like AFATDS, each system was

being designed in a “stovepiped” fashion by sponsors that did not have a military-wide

view. In the face of this confusion, the Marine AFATDS ORD writers stated:

AFATDS must interoperate with all MAGTF Command, Control,
Communications, Computers, and Intelligence tactical data systems.
 These systems include, but are not limited to the Intelligence Analysis
System, Improved Direct Air Support Center, Tactical Combat
Operations, Position Location Reporting System, Target Location
Designation Hand-off System, and the Contingency Theater Automated
Planning System. [AORD00, 2]

Two of these systems have been superceded (Tactical Combat Operations and the

Position Location Reporting System), and one has never been deployed (the Target

Location Designation Handoff System.) The ORD covers a lot of systems and a lot of

ground, and uses the buzzword “interoperate,” but what “interoperate” means is never

defined here or in any other requirements documents. As far as USMC systems were

concerned, the AFATDS designers were left with no systems with which to test

interoperability and no proper guidance on what interoperability meant.

86

2. Interface Control Documents

Despite the vague ORD, the military acquisition system has a documentation

system in place for interfaces. In accordance with this system, the AFATDS program

office requires the developer to publish Interface Control Documents, called ICD’s.

There is one general ICD volume that defines the methodology of AFATDS interface

design, and then an ICD is published for each major system that AFATDS must interface

with. The systems for which the ICD’s are written are listed in the System Segment

Specification paragraph 3.2.3. The System Segment Specification lists no fewer than 13

separate interface protocols that AFATDS must comply with, and no fewer than 29

separate systems that AFATDS must interface with. The Intelligence-Operations System

(IOS) is not listed, although both JMCIS and GCCS are listed. The GCCS mentioned in

the ICD is GCCS -Army, while JMCIS has transitioned to GCCS-M.

The ICD’s list the type of messages that must be transmitted between systems,

and outlines out what will happen with each message in terms of needed operator

intervention to add information or ensure information is not lost. Now imagine that a

particular OPFAC has thirty messages arrive an hour – a fairly low rate. If an operator is

required to monitor and add information to each message, the chances for error are high.

ICD’s are an important item for interoperability, but any processing requiring manual

steps is unacceptable.

3. DII-COE Compliance Requirements

AFATDS is certified by the Army6 to be at DII COE compliance level 6, with

waivers for some items, and some items having met a slightly higher compliance level.

Recall from the discussion of the DII COE compliance chart that true compliance is not

achieved until level 7, with full compliance being level 8. Raytheon is working

feverishly to become fully DII COE compliant, and in fact plans on full compliance by

the release of GCCS Version 4.x, which was originally expected in late 1999, but hasn’t

6 As with the other services and their systems, the Army has been delegated the authority to certify its

own system by JITC. This is an automatic conflict of interest. [WATK02]

87

yet been released. Further, AFATDS has implemented some joint segment software that

improves the COP. Specifically, AFATDS has added NIMA’s Joint Mapping Toolkit

(JMTK) to version A99, released this year to the Marine Corps. These efforts drive a

continuing need for AFATDS program funding.

D. AFATDS IMPLEMENTATION ISSUES

1. The Master Unit List

The Use Cases listed above gave some indication of the importance of the Master

Unit List. The MUL contains the base data upon which all AFATDS operations depend.

The MUL is a listing of all friendly units in a theater. The MUL can contain up to 32766

units. If a unit is not listed in the MUL, AFATDS cannot process information to or from

that unit. The MUL must be the same between all AFATDS workstations at all

OPFACS on the active network. Information stored in the MUL is different than that

stored in a friendly unit, but the two are tied together when friendly unit information is

entered.

In AFATDS, a target is not an enemy unit. A target is any point on the ground

along with a detailed description of what is there to be hit. In fact, the fire support

community may target hilltops and road junctions “just in case” there is an enemy force

there later. In automated mode, AFATDS chooses whether to shoot such targets based on

the Commander’s Target Selection Criteria. Also, an enemy unit is not necessarily a

target. These targeting and enemy concepts are often at odds with objects of the same

name in other C2 systems. Again, semantic confusion is introduced into the

interoperability equation.

AFATDS Version A98 data is stored in a relational database called InterBase,

from Borland International. ([GCNS95] & [FSSS00, 18]). However, AFATDS is

primarily developed by the U.S. Army, who several years ago mandated that all its

systems would use the “Joint Common Database” (JCDB). The JCDB is an Informix

database designed by the Army to support their Army Battlefield Command System, a

collection of C2 systems. The JCDB is used by the Army (principally in GCCS-A), and
88

it is neither joint across services, nor is it used by all Army systems. However, AFATDS

is required to exchange certain classes of information with the JCDB. AFATDS Version

A99 implements the JCDB.

2. Current Capabilities

AFATDS does what it was designed to do. It is particularly suited for the Marine

Division and below. The artillerymen in the artillery regiment and below have become

duty experts. Here, fire mission processing is a daily requirement and the AFATDS

operators and support staff have the most familiarity with this complex system.

However, above the division level there are major concerns with AFATDS. These

concerns stem from the inability of AFATDS to interface with other command and

control systems. In particular, MEF staffs are concerned that the one system that “makes

decisions” (AFATDS) does not contain the same data as their other Command and

Control Systems, which display the Common Operational Picture. Any shadow of doubt

about correct data in the AFATDS COP will put AFATDS mission-processing into

manual mode, thereby negating the benefits of automating fires in the first place.

Finally, the technical fire control modules of AFATDS (fielded in version A99)

have just been fielded to the Artillery batteries, and the early reports are not yet in about

this critical task.

89

THIS PAGE INTENTIONALLY LEFT BLANK

90

VI. INTEROPERABILITY REQUIREMENTS ANALYSIS

A. INTRODUCTION

The goal of all Command and Control Systems is to build situational awareness.

AFATDS and IOS build situational awareness when they present the same data to the

commanders in ways that compliment his understanding of the battlefield. Conversely,

the more the AFATDS and IOS battlefield informational representations diverge, the

greater the loss of situational awareness. The battlefield is complicated enough without

the negative effects of having different systems presenting different information. This

chapter analyzes two primary operator tasks that require the interoperability of these two

systems.

Solving interoperability issues requires system designers to decide “who owns the

data.” “Owning the data” means the system in question is the authoritative source for

that type of data. In the AFATDS/IOS interface, this question is important because both

systems do different things with the data. AFATDS uses high fidelity data to

automatically process targets and shoot, while IOS data is of lower fidelity but is more

widely shared across the organization. A logical division of data would be for AFATDS

to “own” fires data, while IOS “owns” COP data. If this delineation is articulated early,

it helps the engineers correctly apportion responsibilities and develop communications

that support the decision.

When two systems become interoperable, collaboratively working to meet the

same goals, the systems are federated. The collection of collaborating systems is known

as a federation. There are three ways that fielded systems can become federated. Either

one or both systems hardware can change, the software can change, or the organization

can develop workarounds. Generally, the organization will develop workarounds on the

spot to resolve system differences. These changes to techniques and procedures are often

dangerous in practice because they are ad-hoc and don’t affect the underlying

incompatibilities. The advantage however, is that the organization has complete control

of their workarounds.

91

Software has the advantage of being malleable, and is often preferred over

hardware integration. Software integration options are to change one or both systems

software interfaces, or add middleware that serves as a translator between the systems.

The addition of middleware can be either in the form of “wrappers” that surround the

target system interfaces, or separate system translators that convert data in between

systems. Changing system interfaces means modifying legacy code, which is expertise-

intensive and expensive. Adding middleware (such as wrappers and translators) is often

seen as easier but has added problems in getting the translation correct and added

overhead in terms of time to make the various translations. Signifcant work has been

done in this area by NPS students. Captain Paul Young, USN, has developed the

Federation of Independent Objects Model (FIOM) as a part of his PhD dissertation. The

FIOM implements translator middleware using XML, XSLT, and automated methods to

integrate legacy systems. [YOUN02]

B. LISI-IMM

When evaluating the proper course of action to take in integrating systems, it is

useful to state the degree of interoperability that exists between two systems and the

degree of interoperability desired. The Department of Defense has adopted the Levels of

Information System Interoperability – Interoperability Maturity Model (LISI-IMM)

[LISI98] to define inter-system interoperability. The advantage of using this formal

interoperability evaluation method is that it evaluates all areas of interoperability in terms

of specific and agreed upon interoperability goals.

The LISI-IMM evaluates systems interoperability in terms of the four attributes of

Procedures, Applications, Infrastructure, and Data (referred to as PAID). The following

table lists the attributes with their definition, and some examples of the attribute.

92

Attribute Definition Examples
Procedures Policies, standards, and guidance

leading to the development and
deployment of the system(s).

• Security Policy
• Operating Policy
• Workarounds

Applications Software that enables the system to
meet its mission.

• AFATDS Target
Selection Standards
module

• IOS Joint Mapping
Toolkit

Infrastructure Items that support a physical and
logical connection between systems.
This includes system services.

• Protocol stacks
• Network hardware
• Operating System
Services

Data Information Processed by the System to
meet the needs of the applications.
Data includes both semantic and
syntactic data.

• IOS Track
• AFATDS Unit
• IOS Overlay
• AFATDS Boundary

Table 16. LISI-IMM Attributes (After [LISI98, 2-8]).

There are five levels of interoperability, ranging from the lowest level of zero to

the highest of five. The characteristics of each level are listed below: [LISI98, 2-6]

• Level 0: Isolated Interoperability in a Manual Environment

Level 0 describes isolated, standalone systems. No direct electronic connection is
allowed or is available, so the only interface between these systems is by manual
re-keying or via extractable, common media (i.e., disk). Fusion of information, if
any, is done off-line by the individual decisionmaker by other automated means.

• Level 1: Connected Interoperability in a Peer-to-Peer Environment

Systems that are capable of being linked electronically and providing some form
of simple electronic exchanges. These systems have a limited capacity, generally
passing homogeneous data types, such as voice, simple “text” e-mail, or fixed
graphic files such as GIF or TIFF images between workstations. They allow
decision-makers to exchange one-dimensional information but have little
capability to fuse information together to support decision-making.

• Level 2: Functional Interoperability in a Distributed Environment

Systems reside on local networks that allow data sets to be passed from system to
system. They provide for increasingly complex media exchanges. Formal data
models (logical and physical) are present. Generally, however, only the logical
data model is accepted across programs and each program defines its own
physical data model. Data is generally heterogeneous and may contain
information from many simple formats fused together, such as an image with an
annotated overlay. Decision-makers are able to share fused information between
systems or functions.

93

• Level 3: Domain-Based Interoperability in an Integrated Environment

Systems are capable of being connected via wide area networks (WANs) that
allow multiple users to access data. Information at this level is shared between
independent applications. A domain-based data model is present (logical and
physical) that is understood, accepted, and implemented across a functional area
or group of organizations that comprises a domain. Using agreed-upon domain
data models, systems must now be capable of implementing business rules and
processes to facilitate direct database-to-data-base interactions, such as those
required to support database replication servers. Individual applications at this
level may share central or distributed data repositories. Systems at this level
support group collaboration on fused information products. Decision-making is
supported by fused information from a localized domain.

• Level 4: Enterprise-Based Interoperability in a Universal Environment

Systems are capable of operating using a distributed global information space
across multiple domains. Multiple users can access and interact with complex data
simultaneously. Data and applications are fully shared and can be distributed
throughout this space to support information fusion. Advanced forms of
collaboration (the virtual office concept) are possible. Data has a common
interpretation regardless of form, and applies across the entire enterprise. The
need for redundant, functionally equivalent applications is diminished since
applications can be shared as readily as data at this level. Decision-making takes
place in the context of, and is facilitated by, enterprise-wide information found in
this global information space.

The AFATDS/IOS interface is at LISI-IMM level two. They do not share the

domain-based data model required for systems to be judged at level 3. Level 2

interoperability is not acceptable. The user requirements drive the need for the shared

data model given at level 3.

C. USER REQUIREMENTS

1. Requirements

There are two critical requirements. The first is for both systems to provide the

same COP. The Marine Corps wants both systems to provide the same COP, so that if

one system shows a unit, the other system knows about the same unit at the same place

and at the same time. (Recalling the discussion of a view, the second system may not

display the same unit, but must know about it.)

94

The second requirement is to conduct fire missions. The Marine Corps wants to

use the IOS (and IOS clients such as C2PC) to Conduct Fire Missions via AFATDS, and

get the same results as if the IOS was an AFATDS observer. This includes updating the

IOS COP to show the effects of the mission.

2. Actors

The Actors required for the interoperability Use Cases are the union of the Actors

required for each individual system. When analyzing the missions of each system along

with the Actors, it becomes clear that the differences between the actors conform to real-

world differences in missions. So, one cannot make the “Fires Coordinator” actor a

member of staff, because the Fires Coordinator has a critical role in preventing fratricide,

and that role is differentiated from that of Staff. The following table lists all the actors in

the interoperability effort.

Actor Role Name Description Example Instances
Commander The Commander has the same role in both

IOS and AFATDS.

• Battalion CO
• Regimental CO
• Division CO

Staff A member of the commander’s staff fills the
staff role. The staff is responsible for
implementing the Commander’s policy.
Staff provides human oversight of the COP.
At least one member of the Staff serves as
the COP Track Correlator (The “TOP
COP.”)

• Intel Officer
• Operations
Officer

• Logistics
Officer

Fires Coordinator The specific role important to the
interoperability of the two systems is the role
that checks fire missions against the
battlefield geometry to prevent fratricide.

• Artillery
Battalion Liaison
Officer

• Infantry
Battalion Fire
Support
Coordinator

Sensor The sensor provides the sensing function.

The sensor can be any human or digital
information provider. In an interoperable
scenario, the sensor is often a Forward
Observer.

• Reconnaissance
Team

• Artillery
Forward Observer

• Counter-fire
Radar

95

Friendly Unit Any unit so designated by the Commander,
whether he controls them or not. (Adjacent
units may not be under control, but still have
effects in the federation.)

• Infantry
Company

• Artillery
Battalion

• Mortar Platoon
• Airplane

Table 17. IOS/AFATDS Federation Actors.

3. Provide COP

AFATDS and IOS must present the commander views of the same COP. In order

to achieve this, there must be a common representation of objects between systems. An

example of the utility of sharing the same COP would be the ability of a C2PC operator

to enter a fire support coordination measure that was accepted and used by the AFATDS

network, removing the requirement for staff to switch to an AFATDS terminal every time

they needed to change a fire support graphic. Given the COP Use Cases for each system,

and the LISI-IMM, here is the evaluation of the current state of affairs for each PAID

attribute.

• Procedures

Both systems share the same organizational procedures since they both support

the Marine Corps “business rules.” The Business rules are the sum of Marine

warfighting doctrine. The COP is developed in accordance with the COP handbook, a

statement of the business rules. Differences in operational procedures are attributable to

differences in system design, and are not significant. There are no hindrances to

interoperability from a procedural standpoint.

• Applications

System applications differ because of the different missions each system has.

This heterogeneity in applications is required to support the commander and the

functional warfare areas. In terms of the COP, however, there is no reason why both

systems can’t share the same applications. This is beginning to occur. For example, the

Joint Mapping Toolkit (JMTK), a segment for manipulating mapping products and

produced by the National Imagery and Mapping Agency (NIMA) to run on DII COE
96

platforms, has been added to AFATDS A99 software. IOS has had the JMTK since its

inception. This commonality across applications is one step toward interoperability.

• Infrastructure

For these systems, infrastructure can be correlated to meeting the requirements of

the DII COE model. IOS is level 8 DII COE compliant, while AFATDS is (self-

evaluated) level 6 DII COE compliant, with some processes waivered. The waivers are

given by the service chief for those items that cannot easily be made DII COE compliant.

Clearly, AFATDS must become fully DII COE compliant to help ensure interoperability.

It must be stressed that DII COE compliance only affects the Infrastructure portion of the

interoperability requirement. Further, DII COE compliance may become obsolete in the

future, while the requirement for common infrastructure remains. Common

infrastructure must be mandated from organizations outside and above the system

developer.

• Data

System data is the big issue. IOS and AFATDS have widely different data

models, developed for different but related purposes. Each system models the battlefield

differently, and there is no common data representation between them. For example, a

friendly firing unit is modeled to great detail in AFATDS in order to meet the goals of

ammunition tracking and producing firing data. Meanwhile, the same unit is represented

in IOS as a unit track, with a course and speed and other non-actionable data. There is no

reliable automated way to convert Tracks to Units and vice versa.

Another question is what should be shared. At a minimum, the IOS and AFATDS

must have a method of identifying the same object to each other when the two systems

communicate. If a friendly firing unit is sent from the IOS to AFATDS, human

intervention is required to enter all the data that the IOS doesn’t contain that the

AFATDS needs to properly process missions. The Track/Unit issue is the example, but

most other objects have the same or more complicated issues. The common, shared data

model is the primary obstacle to federation COP interoperability.

97

4. Use Case Conduct Fire Mission

The second critical requirement for Marines is to be able to use an IOS client to

call for fire. This presents some interesting organizational issues. Primary among them

is authenticating the IOS client as having the authority to initiate fires. For instance, one

doesn’t want someone thirty miles from the front calling for fire when he has no way of

controlling the effects. Generally, only people (or sensors) that can observe the effects of

the fires are permitted to call for fire. Also, there are most always area restrictions – a

Forward Observer is expected to call for fire in an assigned zone, for example. Yet these

are organizational issues for which there are organizational answers that the Marine

Corps can work out. The point is a C2PC cannot be used to call for fire right now

(without help from middleware)7. The following Use Case and sequence diagram

represents a proposed usage of the federation.

USE CASE: Conduct Fire Mission with IOS Client
Actors: Observer, Fires Coordinator, Firing Unit
Purpose: Deliver fires on targets.
Overview: This Use Case describes the steps necessary for AFATDS to

deliver fires on targets of opportunity with an IOS Client
acting as the observer.

Type: Interoperability
Cross References: R1.1-1,3, R2.1-2.3 R5.1-5.3, R6.1-6.7, R7.1-7.2
Actor Action System Response
1. This Use Case is initiated when an IOS
Client (observer) calls for fire. The IOS
sends it to the AFATDS in the OPFAC
(which is the COC), and the IOS. The
message includes the address of the IOS.

 2. The IOS server identifies the message
as a request for fire and records the fire
Mission grid for COP purposes. The IOS
waits for a target number from the
AFATDS. Until a target number is
assigned, correlation of the IOS target and
AFATDS target is by grid coordinate and
sender.

7 Middleware (The Fire Support Client) has been developed to do part of this. It is covered in the next

chapter.

98

 3. The AFATDS OPFAC verifies validity
of the Call for Fire Grid and other data.
AFATDS assigns a target number to the
target and sends it to the IOS Client and
IOS. AFATDS compares the suspect
target to target selection standards and
determines attack precedence. AFATDS
filters the target, checking for target
duplication. AFATDS routes the Call for
Fire to a Fires Coordinator based on target
location and other properties.

 4. Upon receipt of the target number
from AFATDS, the IOS client and IOS
update the target.

5. The Fires Coordinator checks the target
location against known friendly locations
and other parameters. The Fires Coordinator
AFATDS system approves or denies the Call
for Fire.

 6. AFATDS determines which unit can
range the target, has the appropriate
ammunition, and is available for missions.
AFATDS sends the mission to that Firing
Unit. AFATDS sends a “message to
observer” to the IOS Client and IOS
telling the Observer what to expect from
which Firing Unit.

7. The Observer acknowledges receipt of
the message to observer.

 8. The IOS updates the target with the
AFATDS-assigned target number.

9. The Firing Unit acknowledges receipt of
the mission.

 10. The Firing Unit AFATDS processes
the Fire Mission by conducting technical
Fire Direction and sending the appropriate
commands to the gunline.

11. The observer observes the effects on the
target and ends the mission. The observer
sends a message containing tactical
intelligence about the effects on the target to
AFATDS and IOS.

99

 12. AFATDS sends an End of Mission
message to the Fires Coordinator and the
Firing Unit. AFATDS saves the tactical
intelligence from the mission and updates
its databases. AFATDS updates the
Firing Unit information by decrementing
the amount of ordnance expended from
the Firing Unit.

 13. IOS updates the target as “fired” in its
COP.

ALTERNATE Courses:
Step 3: This step can be done automatically or manually. Current USMC practice is to
have a “man in the loop,” so this check is shown as an Actor action, with communication
via the AFATDS system.
Step 4: If the Mission is Denied, AFATDS sends a Message to observer stating that, and
saves the target for later processing or analysis.
Step 11: The Observer can choose to adjust the fall of shot based on demonstrated lack
of effect on the target, or can repeat the mission if more effects are needed. In these
cases, processing continues at step 5.

Table 18. IOS Client Call for Fire Use Case

In general, mission processing with the IOS Client is very similar to that of

processing as if the client was a regular observer. The addition is in the multi-cast

capability from the client and AFATDS (in the FSCCRole) to the IOS server, which

maintains the updated COP. Multicast is a simple switch from unicast mode, but requires

human oversight to set up the dependencies between AFATDS and IOS. The IOS is

responsible for identifying the Target state (suspect to active to shot to end of mission)

and correlating the target with the relevant IOS client and AFATDS messages. The

simple solution of using the target number, assigned by AFATDS, keeps this important

responsibility with AFATDS and requires few changes. The following Figure shows the

implementation of this Use Case in terms of a UML Sequence Diagram. For the IOS, the

COP contains the target; therefore the messages indicate processing between the

incoming messages and the COP. Finally, do not read too much into the timing aspects

of the apparent parallel processing between the AFATDS nodes and the IOS. Although

the processing is time-constrained, the timing is likely to be in terms of seconds rather

than milliseconds. For example, the “End of Mission” message from the IOS Client may

reach both systems at once but take longer to work through the AFATDS network

100

because it needs to reach three more nodes. This transmission time will produce some

small discrepancies between the systems.

IOS_
Client

Firing
AgencyRole

FDCRoleFSCC
Role

Firing AgencyIOS

FireMission(Suspect_Tgt)

FireMission(Suspect_Tgt)

MsgToObserver(Target)

FireOrder(Firing_Unit, Target)

EndOfMsn(Target)

MsgToObserver(Target)

FireMission(Target)

MsgToObserver(Target)

RoundsComplete(Target)

Shot(Target)

EndOfMsn(Target, Refinements)

Ready()

Process(Target)

Ready(Target)

Process(Suspect_Tgt)

EndOfMsn(Target)

OrderToFire(Target)

Process(Suspect_Tgt, COP)

Process(Refinements, COP)

Process(Target, COP)

EndOfMsn(Target, Refinements)

EndOfMsn(Target)

MsgToObserver(Target)

Figure 23. IOS Client Call For Fire Sequence Diagram.

101

Comparing Figure 23 above to Figure 22 (The AFATDS-only Networked Call for

Fire), the Federation is now inside the system boundary, as they are acting as one entity,

and should so appear to the end user. The second item of note is the addition of the COP,

which is the point of keeping the IOS informed of the mission. The IOS has the

responsibility for the COP. How the AFATDS links to the IOS for other COP updates

must be developed. Third, note that only the AFATDS FSCC role has any additional

duties, and those duties are to add one address (the IOS server) to its mission broadcast

tables.

D. THE CRITICAL INTEGRATION CHALLENGE

We return again to the LISI-IMM attributes of PAID. There are few problems

surmounting issues with Procedures because the procedures underlying both systems are

the common Marine Corps tactical processes. The Applications are what we’re trying to

integrate, but that becomes easier as the Infrastructure evolves to the DII COE standard

and common communications (such as the Common Message Parser) for both systems.

Instead, the critical issue preventing interoperability is the Data. This section discusses

specific issues with the data representations that must be fixed.

1. The AFATDS MUL

AFATDS friendly units are limited to what is in the Master Unit List (MUL).

Although there can be up to 32766 friendly units, the name of the unit must agree in the

MUL across the entire AFATDS network, or else the MUL must be changed to reflect the

new friendly unit structure. The MUL includes observers, limiting them as well. The

primary reason for using the MUL was to set up the AFATDS database prior to execution

to simplify networking parameter entry for the operators. Since AFATDS can use the

MUL to figure out what communications protocol a node uses, it doesn’t need the

operator to set that up. The decision to use the MUL has resulted in a non-scalable and

brittle AFATDS network.

102

2. Friendly Firing Unit Versus Track

The AFATDS friendly firing unit is modeled with a rich data structure in order to

accurately monitor and plan fires. Because of its history, the IOS stores information

about a unit as a unit track, which does not contain the same amount of data. The

operator who creates a friendly unit on an IOS Client must create the same unit in

AFATDS, or import the unit from IOS into AFATDS and add the extra data in AFATDS.

This leads to dangerous, possibly erroneous duplication and wasted time. This

workaround quickly breaks down for any non-trivial situation with numerous units.

3. Unit Identification

There is no common naming standard for track objects and AFATDS units.

Therefore, the IOS designers have decided to use the Unit Short Name as the Key field

between units. This generates confusion, and every unit has its own Standard Operating

Procedure (SOP) for short names. For instance, 5th Battalion 10th Marines (an artillery

unit) might be labeled as 5/10. But it could also be 5-10 or 5BN10THMAR. When such

a unit hits the IOS/AFATDS interface, an operator must resolve the various differences.

There are a certain percentage of tracks that will get by an operator, contributing to COP

degradation.

4. COP Object Translation

In AFATDS, the Fire Support Coordination Measures (FSCM’s) are called

geometries. They are expressed as a collection of up to 30 grid locations and then several

other identifying features. The corresponding data in IOS is a polyline in an overlay.

The AFATDS designers made a design decision to limit FSCM geometries to thirty

locations or less. They made this decision because the current message set will only

support transmission of that number of points. This limitation is not present in the IOS

polyline. In higher level COC’s, such as at the Division or MEF, FSCM’s often have at

least one hundred grid locations. Therefore, AFATDS FSCM’s don’t scale in the larger

COC’s. Further, AFATDS checks these boundaries during mission processing, so a lack

103

of accuracy translates directly to possible fratricide and the inability to hit certain areas

without manual intervention. When FSCM’s are translated, an operator is again required

to interpret its coordinates on a map.

104

VII. CURRENT INITIATIVES

The Marine Corps is aware of the issues surrounding the interoperability

challenge. There are several initiatives currently in process that attempt to ameliorate the

interoperability problems. This chapter lists some of those initiatives and how they will

help.

A. FIRE SUPPORT CLIENT

The Fire Support Client is middleware written by Raytheon that allows an IOS

Client (such as C2PC) to enter fires data on the Client and send that data to the AFATDS

network. Specifically, the client enables the C2PC user to:

• Create and Delete AFATDS Geometries such as Fire Support Coordination Measures

• Receive, filter, and display AFATDS information

• Receive reports on unit status as stored in the AFATDS network

• Creation of targeting lists for processing by AFATDS and reports from AFATDS
target lists

• Update unit locations in AFATDS database

• Call for Fire to the AFATDS network as if the Client was a traditional AFATDS
observer [FSCA01]

The Fire Support client is effective in extending the AFATDS network to those

organizations that do not have a dedicated AFATDS box. Yet the Fire Support Client

doesn’t solve the interoperability issue because no data in the Client interacts with the

IOS data and COP. The user of the IOS client can overlay AFATDS data on his screen,

but has no automated way of resolving differences between the objects represented. As

an example, imagine a unit represented in each system. If there is a 100-meter grid

difference in their locations, and the C2PC operator overlays the AFATDS data on the

IOS picture. Then the C2PC operator will see two symbols on his screen. A more

dangerous example is if the grids are not close – then the operator is not sure where the

unit is actually located, and the difference may be operationally significant.

105

B. PROXY SERVER

The proxy server is middleware. The AFATDS project main sponsor is the

Army. The Army required AFATDS version A99 to migrate to version 4.x data

structures in 2000. The GCCS-M interface, known to the Army as the JMCIS interface

(which is the same interface that TCO uses, which runs on an IOS box) used UB version

3.x. The GCCS 4.x and UB v 3.x are incompatible, so Raytheon wrote a proxy server that

would reside on JMCIS/GCCS-M/TCO/IOS boxes (as a segment on the Version 3.x UB)

that would translate v4.x data into v3.x data. The proxy came in because the segment

riding on the UB v3.x used the old API’s. [APRX00] This is an example of middleware

being used to fix a versioning issue.

The proxy server is effective in translating those items that can be translated

between IOS and AFATDS. A system operator is still required to enrich the data model

where the data does not exist and ensure that short titles of the units are properly

translated between the systems. Finally, as GCCS transitions to version 4.x, the proxy

server should be replaced by the communications methods common to the infrastructure

underlying both systems.

C. TESTING

The Marine Corps Tactical Systems Support Activity (MCTSSA is the west-coast

part of SYSCOM) has the charter to conduct functional (or “black box”) testing of

recently released software for compatibility. They have built a facility that has all

currently fielded Command and Control hardware and software, connected by fielded

tactical communications devices. In addition, they have some ability to inject software

faults and hardware failures into testing to evaluate the results. MCTSSA refers to their

test suite as “The Node.”

I observed the MCTSSA test of the AFATDS/IOS connection in response to a

Safety-of Use Message sent from the I MEF current fires officer in January 2002. The

message alleged several critical safety deficiencies in the interface that could result in

fratricide. [1MEF02] The AFATDS project officer recommended not using the

AFATDS/IOS interface until testing could be completed at MCTSSA. The interface was
106

tested in late February 2002 and was indeed found to be inoperable. Specifically, no

COP objects could be shared between the AFATDS and IOS Networks (both networks

still worked internally) despite the proxy server. Knowing this information, the AFATDS

project officer directed that the new software versions of both systems be tested against

each other. These versions did interoperate at the previous level (LISI-IMM level 2),

and the MARCORSYSCOM made the logical decision to rapidly issue the new software

to the Fleet Marine Forces.

What is interesting is that neither MCTSSA nor MARCORSYSCOM knew that

the software interface didn’t work until the FMF reported it. From a MCTSSA

perspective, there are thirty-plus C2 programs out there, and each one changes versions

on its own schedule, usually annually – therefore the testing problem is intractable. From

the FMF perspective, MCTSSA and MARCORSYSCOM appear to be reactive vice

proactive.

MCTSSA (Systems Engineering and Integration Branch) does have one really

outstanding testing project called the MAGTF C4SIR Integrated Program (MIP). The

MIP is attempting to baseline8 all the C2 systems in the Corps and test them in a

federation rather than individually. Testing is done using an “end-to-end” concept,

sending messages in a tactical environment and determining total transmission time. This

method is effective because it highlights federation failures rather than individual system

failures. For instance, the MIP program may measure the amount of time it takes to send

a Call for Fire from an observer to the Firing battery. Perhaps the AFATDS program has

promised processing times in terms of milliseconds, but the end-to-end test indicates a

time approaching two minutes – then the MCTSSA engineers can troubleshoot the delay.

The fact that the MIP is baselined allows for scientific analysis. MARCORSYSCOM is

suspicious of the MIP program because the baseline constrains Project Officers from

releasing products whenever their individual programs are ready. The Fleet may not

accept baselining because individual communities may feel they don’t have “the latest

software.”

8 Baselining means that individual systems are under version control, and software system versions are

not issued to the fleet without being tested and put into the new baseline, which would coordinate Corps-
wide release of all software in the new baseline.

107

D. FLEET SUPPORT CONTRACTORS

Each company that provides a C2 system also has fleet support contractors on the

payroll that work at the major commands such as the MEF’s. These contractors serve as

liaisons between the manufacturers and the units, report bugs, implement fixes, and act as

“go to guys” for their systems. The fleet support contractors are experts in their systems,

and they become expert in the needs of the fleet. They serve as advocates for improved

systems and can better articulate requirements.

However, there are issues with civilians in a military organization. First, the C2

systems have requirements for ease of use, and in fact, these requirements are the ones

that are properly written in the ORD’s. Needing a contractor means the system did not

meet usability requirements. Second, every contractor that must be hauled to a battlefield

takes the place of a combat-ready Marine. Third, there are obvious safety and liability

issues with civilians on the battlefield. Fourth, the contractor works for the company that

makes the C2 system. He just happens to be posted with the Marine Corps. Of course

they will support the Corps, but their viewpoint is that of their system, rather than

federation interoperability.

E. VERSION CONTROL

The SE&I branch of MARCORSYSCOM is attempting software version control.

They have made several efforts at coordinated version control between the contractors,

and tied this effort into the MIP baseline effort at MCTSSA. The current system is called

“C4I for the Warrior” (C4IFTW) and is supported by a password-protected database

called MSTAR. MSTAR stands for the MAGTF Systems/Technical Architecture and

Repository. [MSTR02] The MSTAR’s mission is to:

…provide a MAGTF C4ISR system-of-systems that is controlled, secure
and interoperable in the Joint Environment, from the battle field to the
sustaining base. MSTAR is a suite of web accessible products that provide
Marine Corps acquisition professionals information they require to ensure
systems interoperability. [MSTR02]

108

MSTAR should contain all the I-KPP’s for each MARCORSYSCOM project,

along with the development and deployment data for each system. However the database

is empty when queried for AFATDS (both version A98 and A99), and calls and emails to

the listed points of contact were not returned. Therefore it is impossible for me to

determine if this method of data collection and coordination is working or a failure.

But even if SE&I branch had a perfect tracking mechanism for every C2 project

in the Corps, the acquisition culture rewards project officers that meet cost, schedule, and

performance constraints. They are not rewarded for spending time with SE&I division

talking about interoperability. Because project officers are pulled from the fleet (as was

the case with the last two AFATDS project officers) there is no institutional memory, and

each officer focuses first on the budget. The senior leader in the ground C4 project office

has control of 11 different C2 programs but no interoperability tasking. He has never

been provided the specific role of software integrator, and doesn’t have the training or the

expertise to coordinate version control between all the various systems. The bottom line

is there is no penalty for not meeting version or interoperability goals.

109

THIS PAGE INTENTIONALLY LEFT BLANK

110

VIII. CONCLUSIONS

A. GENERAL

The AFATDS/IOS interface is at LISI-IMM level 2, which permits limited

interoperability with significant user intervention for data conversion between the

systems. The current initiatives to apply third party middleware to solve the problem are

only partially successful. Further, the middleware solutions are only effective until either

software version changes, which occurs annually at a minimum, although through luck a

middleware solution may make it through a version change. The goal of a truly

interoperable system is to reach LISI-IMM interoperability level 4. In order to reach this

goal, the AFATDS/IOS interface must overcome the hurdle of different data models.

The major hinderances to reaching interoperability level 4 are organizational and political

rather than technical.

Even a cursory search of the relevant literature reveals that technical solutions to

interoperability abound. A good interoperability solution will be open source, shared

across many domains, and focus on integrating the system-of-systems data models.

Possible technical solutions include ideas like Captain Young’s Federation of

Independent Objects interoperability Model (FIOM), the use of Extensible Markup

Language (XML), or similar languages and structures that support information sharing.

No one of these technologies completely solve the interoperability problem, but they do

provide a good foundation for further work. The challenge of moving an adequate

number of bits through the air is being met, and the protocols necessary for low-level

communication between systems is no longer a challenge. Now it is time to focus on the

data.

No matter what solution or combination of solutions, each will require the

expenditure of significant sums of money and time. Solving interoperability issues will

also require expertise and a degree of cooperation from every DoD agency heretofore

unseen. Yet, the need is pressing. Every officer will run up against an interoperability

challenge sometime in his or her career. Tactical interoperability problems increase the

potential for casualties. Rejecting automated Command and Control systems or ignoring

111

them in the hopes they will go away is a futile strategy. Instead, there are specific small

steps that can be taken by each level of the hierarchy to solve interoperability issues.

They are listed below.

B. JOINT RECOMMENDATIONS

The JROC must force interoperability. They have been given the authority, and

have been tasked with the responsibility for integration. They must not settle for service

appeasement. In order to integrate, the JROC must rely on Subject Matter Experts.

DISA has the expertise. DISA already has a dedicated and influential role, but the

services must follow DISA guidelines in order to solve interoperability problems.

Services are reluctant to do this not only because of service parochialism, but because

they bear the pain of cost overruns and schedule delays associated with changing

requirements. Yet without JROC control, the question of “who’s in charge” will

continue to paralyze the joint world.

The DoD must agree on a joint standard for naming objects in the tactical

environment. The most basic subset of this problem is to agree on a Unit Reference

Number (URN) standard. The URN would be the key, unchanging attribute allowing

conversion of real-world units between the battlespace and the various systems.

Currently, service parochialism is preventing the DoD from agreeing on a URN standard.

C. MARINE CORPS RECOMMENDATIONS

1. System Architecture Management

112

The Marine Corps suffers because of a lack of an overall systems architecture that

supports the operational architecture. It further suffers because the organizations tasked

with making that architecture do not have the power necessary to make it a reality. In

accordance with the Clinger-Cohen Act of 1996, the Marine Corps appointed a Chief

Information Officer (CIO), tasked by statute with managing all enterprise-wide

Information Technology systems. From the title and responsibilities assigned, one would

think that architecture would be the CIO’s bread and butter, and in fact the CIO has had

extensive involvement in IT decisions on the non-tactical side (this includes the Navy-

Marine Corps Intranet effort). But for political and other reasons, the same has not

happened in the tactical arena.

The CIO must take charge and assume responsibility for the tactical Systems

Architecture effort. A good delineation of effort would be achieved if the CIO dictated

the Systems Architecture in accordance with the Operational Architecture generated out

of the Marine Corps Combat Development Command. Then the Marine Corps Systems

Command could buy or build systems to the Systems Architecture, using the already

established and accepted Joint Technical Architecture.

The Marine Corps needs to articulate its concerns with the Unit Reference

Number (URN), and then submit to a joint decision and implement that decision Corps-

wide. The choice of a number to represent units should take less than a year. Any more

time indicates political inertia is hurting interoperability.

2. MARCORSYSCOM

Until the CIO assumes responsibility for Systems Architecture, SE&I Branch,

MARCORSYSCOM, must be given the authority to halt and re-engineer any given

program to meet interoperability requirements. There is no doubt that requiring Project

Officers to meet interoperability requirements is culturally painful and institutionally

costly, but the Marine Corps must make its procurement people face this pain rather than

fielding non-interoperable systems, where the FMF suffers. This is not happening, as

indicated by the lack of usable data in the MSTAR database, the current SE&I effort to

this end.

The IOS program should use formal program management methods and have its

own funding line in accordance with DoD Acquisition regulations. This will allow better

management of the software and creation of other artifacts, and most importantly,

accurately articulate and document user requirements. Since IOS is a “son of GCCS”, the

IOS program has the larger task of ensuring USMC requirements are met in the parent

software. The IOS program manager and engineers should not be software writers but

requirements articulators.
113

The AFATDS project office must continue to fund short-term solutions that

enable LISI-IMM level 2 interoperability. This includes both the Fire Support Client and

the Proxy Server. Decision-makers must be made aware that these software programs

must have continuing funding and support, because they will require modification at

roughly twice the rate of the supported programs. Interface testing will also require

funding at current rates, which supports an AFATDS project officer at MCTSSA.

3. Fleet Contractors

 Because current and legacy systems are not user friendly and do not interoperate,

contractors (or TechReps) in the FMF are required for the foreseeable future. However,

the FMF should stop hiring program contractors and should start hiring “Interoperability

Engineers.” These interoperability engineers, hired from consulting firms or from other

sources, would work for the FMF, rather than for any particular system, and be evaluated

on their ability to achieve systems interoperability. The Interoperability Engineer skillset

could be met with a bachelor’s degree in Computer Science or a related field, and must

include the ability to accurately articulate and document user requirements.

4. MCTSSA

The Marine Corps (possibly MCTSSA) should implement a collaborative website

for users, administrators, and developers to share information. It should be unclassified

but password protected. Keeping the website on classified networks impedes people’s

ability to use the information. One outstanding website model is SPAWAR Charleston’s

TACMobile website for ground C2 systems. There is unlimited shelf space for training

materials and user’s manuals. Chat and other collaborative tools are built in. Such a

website would require at least one moderator, but would bear great dividends in increased

information sharing between users and developers. MCTSSA already maintains a 24 hour

voice helpdesk and a classified website, which is a start.

MCTSSA’s end-to-end testing (the MIP) must continue. The MIP process should

set baselines and formally report to the CIO at least annually. If there is a political issue

with MCTSSA being under MARCORSYSCOM and not under the USMC CIO, then the
114

MIP process should have the appropriate blessing by the appropriate Marines to become

a CIO-directed effort. End-to-end testing is the only way to accurately assess and

quantify the warfighter’s complaints. Accurate problem descriptions will lead to better

solutions.

D. RECOMMENDATIONS FOR NPS

The Naval Postgraduate School is the Navy and Marine Corps’ corporate

institution for graduate technical education. This year alone, some 20 Marines are

graduating from the ITM curriculum. Upon departing NPS, every Information

Technology and Software Engineering officer will be expected to do their part in solving

the myriad interoperability problems in the fleet. Yet the NPS curriculum has no course

that discusses interoperability issues or interoperability solutions in any depth. Such a

course should be developed. For Software Engineering students, an interoperability

course should be required. Possible topics for an interoperability course include:

• Problems with Software integration in DoD

• System-of-System modeling and Federations

• LISI-IMM and other methods of evaluating current interoperability issues

• Generating Interoperability Requirements

• Shared Data Environments

• Evaluating Middleware and Glue and Wrapper Software

• Data conversion using XML and XSLT

• The Promise and Pitfalls of Object Orientation in integration efforts

The ultimate goal of the course would be to prepare students to evaluate third

party vendor solutions to interoperability challenges, since a common technique for

interoperability is to buy middleware or convert data from one system to another.

Another distressingly common technique is to generate manual workarounds or ignore

the problem. Graduates having the knowledge from a course similar to this would be

much better equipped to handle the inevitable interoperability challenges that they will

face.

115

E. THE UML AS A MODELING TOOL

Important modeling considerations are the amount of coverage of the model (its

scope), and the accuracy with which the model represents reality (its fidelity). A critical

element of a modeling language is the ability to accurately and unambiguously convey

the meaning in the model. The UML is associated with object oriented analysis and

design, and meets these critical elements for object oriented models and eases

development of the corresponding systems.

The UML was used in this thesis to model two systems in the C2 domain that

were not originally designed or implemented using object orientation. Model scope was

limited because of domain complexity. Fidelity was limited for the same reason.

However, it is clear that the Use Cases and resulting UML were easy to learn, accurately

reflected the concepts in the Use Cases, and effectively conveyed the meaning of the

systems. Further, the graphical features of UML led to better understanding of the

systems and interoperability challenges, and pointed to the complexities of system

integration. Although timing and other constraints were not modeled, the UML (and

other associated modeling tools such as the Object Constraint Language) has sufficient

depth to model these factors.

Finally, object orientation appears to be an appropriate paradigm for C2 systems

development. Most battlefield items have attributes and methods that can map directly to

software. Thinking about the battlefield in this way may help warfighters better converse

with system developers to describe their requirements. Using a common visual language

such as UML can only help.

F. AREAS FOR FURTHER RESEARCH

AFATDS and IOS need to share data, and the main sticking point is a shared data

model. Research could be directed at establishing that shared data model from

conceptual and business case rules. Midterm solutions could focus on development or

selection of appropriate middleware products. Another midterm solution that warrants

further research is the use of XML and XSLT to develop middleware that automatically

116

converts data from one system to another. A concrete topic would be to apply Captain

Young’s FIOM (which uses XML) to the data models in the AFATDS/IOS interface.

Research could be conducted into what Commanders actually want. This could

involve prototyping several different COP models and see which is most popular for a

given domain. Research should be conducted into future C2 systems. The Marine Corps

Warfighting lab, in conjunction with the Collaborative Agent Design Research Center at

the California Polytechnic Institute, is developing a shared Command and Control Data

Environment. The system using this data environment is called the Integrated Marine

Multi-Agent Command and Control System (IMMACCS). [POHL01] Although this

initiative is only service-wide (meaning deployment would create a one-service

stovepipe), it could bear fruit in helping define the warfighter’s need.

117

THIS PAGE INTENTIONALLY LEFT BLANK

118

LIST OF REFERENCES

[1MEF02] Sartor, LtCol USMC, G-3 Current Fires, First Marine Expeditionary
Force, TRACK LATENCY DEFICIENCIES WITHIN THE
ADVANCED FIELD ARTILLERY TACTICAL DATA SYSTEM, Feb
2002.

[AHLP99] Headquarters, U. S. Marine Corps, Operator’s Manual, Advanced Field
Artillery Tactical Data System (AFATDS) Operational System Software
(A98), Vols. 1-4 UM-10690A-10/1-4, 15 October 1999.

[AMHD85] The American Heritage Dictionary, Houghton-Mifflin, Boston: 1985.

[AORD00] Marine Corps Systems Command, Marine Corps Operational and
Organizational (O&O) Concept for the Advanced Field Artillery Tactical
Data System (AFATDS), w/Ch 1, 15 February 2000.

[APIC02] Marine Corps Tactical Systems Support Activity, Advanced Field
Artillery Tactical Data System (AFATDS)/C2PC Fire Support Client
(CFSC), January 2002. Online at:http://www.mctssa.usmc.mil/
PSD/C4I Apps/AFATDS_CFSC/AFATDS.html

[APRX00] Mauney, Leslie, Raytheon Systems Engineering, AFATDS Internal
Design Approval Memo, “Modify AFATDS Software to use Proxy
Server API’s for JMCIS Interface”, 26 September 2000.

[BOOC99] Booch, Grady, James Rumbaugh, and Ivar Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley: Reading, MA, 1999.

[BRLA61] Ballistic Research Laboratories, Aberdeen Proving Ground, Report No.
1115, “A Third Survey of Domestic Electronic Digital computing
Systems : 1961. http://ed-thelen.org/comp-hist/BRL61-f.html

[BUDD02] Buddenberg, Rex, Professor, Naval Postgraduate School, Personal
interview, papers, and emails, 6 May 2002.

[BULL02] Bullard, Steve, GCCS-M Software Manager, SPAWAR San Diego, Code
157, Personal interview and email, 2 July 2002.

[CHBK98] Department of Defense Chief of Staff, Operations Division (J-33),
Common Operational Picture Handbook for GCCS 3.02, Version 2, 31
July 1998.

119

http://ed-thelen.org/comp-hist/BRL61-f.html

[DAST92] Dastrup, Boyd L., King of Battle: A branch History of the U.S. Army’s
Field Artillery, U.S. Army Training and Doctrine Command (TRADOC),
1992.

[DATL02] Office of the Under Secretary of Defense for Acquisition, Technology &
Logistics, Office of the Director, Interoperability. 13 February 2002.
Online at: http://www.acq.osd.mil/io/sa/support.html.

[DDIG94] Office of the Inspector General, Department of Defense, Milestone
Review Process for the Advanced Field Artillery Tactical Data System,
May 27, 1994.

[DIMP98] Office of the Assistant Secretary of Defense, Command, Control,
Communications, and Intelligence (ASD C3I), Defense Information
Infrastructure Master Plan Version 7.0, 11 May 1998.

[DIRS97] Joint Interoperability and Engineering Organization, Defense Information
Infrastructure (DII), Common Operating Environment (COE), Integration
and Runtime Specification (I&RTS), Version 3.0, July 1997.

[DODD02] Department of Defense Directive 4630.5, Interoperability and
Supportability of Information Technology (IT) and National Security
Systems (NSS), 11 January 2002.

[FCWK01] Dorobek, Christopher J., “Government Ok’s New Info Grid,” Federal
Computer Week, 1 October 2001. Online at:
http://www.fcw.com/fcw/articles/2001/1001/pol-grid-10-01-01.asp

[FSCA01] Marine Corps Systems Command, Statement of Work for the C2PC-
AFATDS Fire Support Client, Initial Version, Quantico: 6 July 2001.

[FSSS00] Raytheon Company, System Segment Specification for the AFATDS
V2.1, Revision B, Contract No. DAAB07-90-C-E708, CDRL Sequence
No. H509: Fort Wayne, 2000.

[GCNS95] “Standard Query, Where’s My Ammo?,” Defense Department Briefs,
Government Computer News, 30 October 1995.

[GSDD01] Space and Naval Warfare Systems Command (SPAWAR) Code 157,
Global Command and Control System – Maritime (GCCS-M) Version
3.1.2.1 Segment Description Document (SDD), 16 March 2001.

[IEEE90] Institute of Electrical and Electronics Engineers, IEEE Standard
Computer Dictionary: A Compilation of IEEE Standard Computer
Glossaries, New York, NY: 1990.

120

http://www.acq.osd.mil/io/sa/support.html
http://www.fcw.com/fcw/articles/2001/1001/pol-grid-10-01-01.asp
silva
27 May 1994

[JCOP02A] Chairman of the Joint Chiefs of Staff Instruction 3151.01A, Global
Command and Control System Common Operational Picture Reporting
Requirements, 1 March 2002.

[JJPS95] Chairman of the Joint Chiefs of Staff, User’s guide for JOPES (Joint
Operation Planning and Execution System), 1 May 1995.

[JPUB01] Chairman, Joint Chiefs of Staff, DoD Dictionary of Military and
Associated Terms, (Short Title: JP 1-02), 2002.
http://www.dtic.mil/doctrine/jel/new_pubs/jp1_02.pdf

[KUBI01] Kubicki, Adam, Captain, USMC, AFATDS Project Officer, Marine
Corps Systems Command, personal interview, December 2001.

[LARM98] Larman, Craig, Applying UML and Patterns: an Introduction to Object-
Oriented Analysis and Design, Prentice-Hall: Upper Saddle River, NJ,
1998.

[LEDE99] Lederman, Gordon N., Reorganizing the Joint Chiefs of Staff: The
Goldwater-Nichols Act of 1986, Wesport: Greenwood Press, 1999.

[LISI98] Office of the Assistant Secretary of Defense (C3I), C4ISR Architecture
Working Group, Levels of Information System Interoperability, 1998.
Online at:
http://www.c3i.osd.mil/org/cio/i3/AWG_Digital_Library/index.htm

[LITT00] Litton Data Systems, “Artillery Fire Control Systems,” 2000. Online at:
http://www.littondsd.com/programs/afcs.html

[LITT02] Little, Laura, Major, USMC, The Digitized COC: After Action Report
from 6th Marines Combined Arms Exercise, February 2002, prepared for
the Tactical Training and Exercise Control Group, Marine Corps Air-
Ground Combat Center, 29 Palms, CA, February 2002.

[LOCH02] Locher III, James R., Victory on the Potomac: The Goldwater-Nichols
Act Unifies the Pentagon, Texas A & M University Press, College
Station: 2002.

[MARC02] Marcinkowicz, Tom, Major, USMC, 6th Marines Communications
Officer, Personal interview, January 18, 2002.

[MCDP06] Headquarters, United States Marine Corps, Command and Control
(MCDP-6), 4 October 1996.

121

http://www.dtic.mil/doctrine/jel/new_pubs/jp1_02.pdf
http://www.c3i.osd.mil/org/cio/i3/AWG_Digital_Library/index.htm
silva
18 January 2002

[MSEI02B] Pasagian, AJ, Major, USMC, MARCORSYSCOM SE&I Project Officer,
SE&I: A Common Sense Approach for Systems Interoperability,
presentation, February 2002.

[MSEI02C] Pasagian, AJ, Major, USMC, MARCORSYSCOM SE&I Project Officer,
Near Term Systems Architecture, presentation, September, 2000.

[MSTR02] Systems Engineering and Integration Division, Marine Corps Systems
Command, MAGTF Systems Technical Architecture and Repository
(MSTAR), 2002. Online at:
http://www.marcorsyscom.usmc.mil/mstar/mstarsplash.html. This
website is password protected.

[PECK02] Peck, Eric, Captain, USMC, TCO and IOS Project Officer, Marine Corps
Systems Command, interview 12 Jun 2002.

[POHL01] Pohl, Jens, et. al., IMMACCS: A Multi-Agent Decision Support System,
Collaborative Agent Research Design Center, San Luis Obispo, CA,
2001.

[SNIN01] SECNAVINST 5000.36, Department of the Navy Data Management and
Interoperability, 1 Nov 2001.

[SPAW02] Space and Naval Warfare Systems Center, Charleston, TACMOBILE
Website, 2002. Online (password protected) at:
https://tacmobile.spawar.navy.mil/tmvhome/

[TCOE95] Marine Corps Combat Development Command, Concept of Employment
for the Tactical Combat Operations (TCO) System, 9 May 1995.

[TIPS95] Commander, Marine Corps Systems Command, Integrated Program
Summary for Tactical Combat Operations (TCO), signed by Gen. Mutter,
29 Dec 1995.

[TMNS92] Marine Corps Combat Development Command, Mission Needs
Statement for a Tactical Combat Operations System, 16 June 1992.

[TORD95] Marine Corps Systems Command, Operational Requirements Document
for Tactical Combat Operations (TCO ORD), with changes 1 and 2, 25
April 1995.

[WALK01] Walker, Robert, DII COE Program Manager, DISA, DII COE Overview:
Presentation to the DII COE Technical Exchange, 15 May 2001.

[WATK02] Watkins, Stan, LtCol, USMC (ret), artillery officer, personal interview, 7
May 2002.

122

http://www.marcorsyscom.usmc.mil/mstar/mstarsplash.html
https://tacmobile.spawar.navy.mil/tmvhome/

[YOUN02] Young, Paul E., Heterogeneous Software System Interoperability through
Computer-Aided Resolution of Modeling Differences, PhD, dissertation,
The Naval Postgraduate School: Monterey, CA, June, 2002.

123

THIS PAGE INTENTIONALLY LEFT BLANK

124

APPENDIX A. GLOSSARY

Term Definition Reference
ADLER A German Artillery C2 system. The acronym stands

for “The Artillery Data Situation and Deployment
Computer Network.”

AFATDS Advanced Field Artillery Tactical Data System

API Application Program Interface. A standardized way
for programmers to call the functions of a given piece
of software without needing to know the details of the
software code.

Artifact “A piece of information that is used or produced by a
software development process.” Examples of artifacts
include source code, help manuals, and written or
electronic documentation.

[BOOC97]

BATES A British Artillery C2 system. The acronym stands for
“The Battlefield Artillery Target Engagement System.”

bps Bits per second. A measure of the digital capacity of a
communications channel.

C2 Command and Control [JPUB01]

C4I Command, Control, Communications and Computers,
and Intelligence

C4ISR Command, Control, Communications, Computers,
Intelligence, Surveillance, and Reconnaissance

CCIR Commander’s Critical Information Requirements

CMP Common Message Processor

COP Common Operational Picture: “A single identical
display of relevant information shared by more than
one command.” A common operational picture
facilitates collaborative planning and assists all
echelons to achieve situational awareness.

[JPUB01]

COTS Commercial Off the Shelf. Refers to commercial
(unmodified) software bought for government use.

CROP Common Relevant Operational Picture: A term
representing a portion of the COP, relevant to a given
echelon or situation.

CTP Common Tactical Picture: A term representing a
portion of the COP, relevant to a given echelon or
situation.

DACT Digital Automated Communications Terminal. This
digital device is one of several used by forward
observers (FO’s) to call for fire.

DII-COE Defense Information Infrastructure Common Operating
Environment.

DISA Defense Information Systems Agency

125

EPLRS Enhanced Position-Location Reporting System

FA CP Field Artillery CP. An Army term equivalent to the
USMC’s Fire Direction Center (FDC).

FDC Fire Direction Center. A generic term representing the
C2 node where technical fire direction computations
occur (in units with indirect fire platforms.) In higher
headquarters, the FDC’s are responsible for a mix of
technical and tactical fire direction.

FMF Fleet Marine Forces. This term refers to Marine
combat organizations in a general sense, independent
of task organization for specific missions.

FSCC Fire Support Coordination Center. The FSCC is a C2
node responsible for conducting tactical fire direction,
fire planning, and clearance of fires (a safety function).
Typically, FSCC’s are part of supported infantry units.

FSCM Fire Support Coordinating Measure. “A measure
employed by commanders to facilitate the rapid
engagement of targets and simultaneously provide
safeguards for friendly forces.”

FSCM’s are drawn on maps and contain instructions
about what is permitted or denied in an area. An
example FSCM is the No Fire Area (NFA).

[JPUB01]

FSE Fire Support Element. An Army term equivalent to the
USMC’s Fire Support Coordination Center (FSCC).

GCCS Global Command and Control System

GOTS Government Off the Shelf. A term referring to
software developed under governmental auspices but
made available to others for use.

IAS Intelligence Analysis System

IER Information Exchange Requirement: The requirement
for information to be passed between and among
forces, organizations, or administrative structures
concerning ongoing activities. Information Exchange
Requirements identify who exchanges what
information with whom, as well as, why the
information is necessary and how that information will
be used.

[SNIN01]

Integration The act or process of making into a whole by bringing
all the parts together. To join with something else;
unite.

[AMHD85]

Interoperability 1. The ability of two or more systems or components to
exchange information and to use the information that
has been exchanged.

2. The condition achieved among communications-
electronics systems or items of communications-
electronics equipment when information or services
can be exchanged directly and satisfactorily between
them and/or their users. The degree of interoperability
should be defined when referring to specific cases.

1. [IEEE90]

2. [JPUB01]

126

IOS Intelligence-Operations Server

IUC Independent User Center. In the AFATDS domain, an
IUC is a standalone AFATDS workstation with a
subset of the capabilities of an OPFAC.

JMCIS Joint Maritime Command Information System

JOPES Joint Operations Planning System. This acronym
describes a process the output of which is Operations
Plans and deployment information.

JROC Joint Requirements Oversight Council

JTA Joint Technical Architecture

JVMF Joint Variable Message Format

MARCORSYSCOM Marine Corps Systems Command. This command is
responsible for development and acquisition of all
Marine Corps materiel, to include software. Also
referred to as SYSCOM.

MCTSSA Marine Corps Tactical Systems Support Activity

MEB Marine Expeditionary Brigade. This combined arms
force is built around an infantry regiment ground
combat element, a composite air group as the air
combat element, and a brigade service support group as
the service support element. It is larger than a MEU
but smaller than a MEF.

MEF Marine Expeditionary Force. This largest of the
Marine’s combined arms forces has a division as the
ground combat element, an air wing as the air combat
element, and a force service support group as the
service support element. It is commanded by a
Lieutenant General.

MET Meteorological Information

MEU Marine Expeditionary Unit. This combined arms force
has a battalion landing team as the ground combat
element, a composite squadron as the air combat
element, and a MEU service support group as the
service support element. It is the smallest sustainable
combined arms force.

MIDB Modernized Integrated Database. This database stores
intelligence information.

MUL Master Unit List. In the AFATDS system, the MUL is
a listing of all friendly units that can be joined in an
AFATDS network.

OODA Observe-Orient-Decide-Act

OPLAN Operations Plan. A collection of documents, maps,
and other items that outline the conduct of a particular
course of action. It may or may not have any relevance
to any particular world situation.

ORD Operational Requirements Document. In acquisition, a
program must have an ORD before it can become a
Program of Record.

127

PLI Position-Location Information

PLRS Position-Location Reporting System

Program of Record Generically used to represent a development or
Acquisition program under the DoD 5000 Acquisition
model. Generally, a Program of Record is one that has
a validated Mission Needs Statement and appropriated
funding.

SPAWAR Space and Naval Warfare Systems Command. This
command is responsible for development and
acquisition of C2 systems for the U.S. Navy and when
tasked, for the U.S. Marine Corps.

SYSCOM Marine Corps Systems Command. This command is
responsible for development and acquisition of all
Marine Corps materiel, to include software.

Systems Architecture Design. The way components fit together. [IEEE90]

TCO Tactical Combat Operations

TDBM Track Database Manager

TPFDD Time-Phased Force Deployment Data. A set of
documents that describe how forces and equipment
will get from one place to another in response to
military need.

Track A track is a single entity reported on the COP such as
an aircraft, ship, TBM or emitter location. A track can
also designate an aggregation of military personnel,
weapon systems, vehicles, and support elements or any
other operationally significant item.

[JCOP02A]

UB Unified Build. This DISA term represents the common
DISA managed software components in a Global
Command and Control (GCCS) suite.

UCP Unified Campaign Plan

View In UML: A projection into a model, which is seen
from a given perspective or vantage point and omits
entities that are not relevant to this perspective.

[BOOC99, 468]

XML Extensible Markup Language. This meta-language
stores the definition and presentation characteristics of
data. By storing this data about data, system
developers can specify and manipulate complex data
models.

XSLT Extensible Style Language Transformation. This
language specifies the transformation of data from one
XML definition to another.

128

APPENDIX B. EXAMPLE MARINE ORGANIZATION FOR
COMBAT

Often, Marine artillery Battalion will be in Direct Support of an Infantry

Regiment. The term “Direct Support” means that the artillery Battalion sends liaison

teams to the Infantry Regiment, and priority for artillery fires goes toward Regimental

Needs. The artillery Battalion provides Forward Observer teams to the supported

infantry Regiment, and answers calls for fire from its own observers first. Figure 24

below shows this typical organization.

Figure 24. Marine Artillery Battalion in Direct Support of an Infantry Regiment

The Liaison team that attaches to the Regimental headquarters is led by an

artillery Captain or Major. Together with his staff and others from the Regiment, he

forms the Fire Support Coordination Center (FSCC). The FSCC is responsible for

planning and executing all fires in the Regimental zone of action, or battlespace. The

Artillery Battalion Liaison cell travels with sufficient AFATDS terminals to support the

Regimental Combat Operations Center (COC).

129

Each of the three Artillery batteries supplies 3 forward observer teams and a

Liaison team to an Infantry Battalion. In the case of the infantry battalions, the battery

liaison officer joins the Battalion FSCC, which is headed by an infantry officer, usually

the Infantry Battalion Weapons Company Commander. The artillery Liaison Officers

bring sufficient AFATDS terminals to support the Infantry Battalion COC’s. Meanwhile,

the forward observers (a 2nd or 1st Lieutenant along with several other Marines) each join

a company and provide fire support expertise as well as radio communications sufficient

to communicate with the Artillery Regiment. The forward observers bring sufficient

digital equipment to support communications with the AFATDS terminals at the infantry

battalion FSCC’s.

One typical Digitized Regimental COC is diagrammed in Figure 25. This COC

was designed by the 6th Marines Regimental Commander, Col Coleman and his staff. It

was used for the 6th Marines Combined Arms Exercise in 29 Palms, Ca., in February and

March 2002. The artillery battalion supporting 6th Marines was 2nd Battalion, 10th

Marines. Although this diagram shows one AFATDS terminal attached to the COC, the

Artillery Battalion typically brings at least two terminals. The second terminal is used

for planning. Also note the IOS (v. 1) Server located in the entrance to the main tent, and

the Command and Control PC (C2PC) computers, which are IOS client stations. Finally,

all the systems were networked via Ethernet. Networking is necessary but not sufficient

for interoperability.

130
Figure 25. Example Regimental COC. (After [LITT02])

The Infantry Battalion COC is a smaller version of the Regimental COC.

Typically, the Battalion COC does not have the large display screens or more than 3

C2PC terminals, and does not have an IOS server. The infantry Battalions also do not

have the tentage to support a large COC, and generally run a COC out of the back of

HUMMWV’s or in one or two AAVC7’s (Assault Amphibious Vehicle – C2 variant).

The infantry battalion does have 2 AFATDS systems, brought by the Artillery Liaison

Officer when he is attached.

The Artillery Battalion “COC” is named the Fire Direction Center (FDC), and

contains 3 AFATDS systems. The Battalion FDC serves as the clearinghouse for fire

missions from the Observers attached to the Regiment. The Battalion FDC then tasks fire

missions to the Artillery Batteries. The artillery Batteries have two AFATDS terminals,

with one terminal providing technical fire direction.

Digital connectivity between the Regiment and the four Battalions (this includes

the Artillery Battalion) is maintained by either an EPLRS network or SINCGARS radio

network. SINCGARS will support up to a 10 kbps connection, while EPLRS will

support up to 57 kbps, with an upgrade to 276 kbps expected by the end of 2002.

 Although AFATDS and IOS both use the same IP-based wireless

communications protocol and can be routed and multiplexed, the 6th Marines

communications officer had to separate AFATDS traffic from IOS traffic onto different

networks due to unspecified incompatibilities. IOS traffic carried the Regimental COP,

and used the EPLRS network, while AFATDS traffic traveled on a SINCGARS network.

[MARC02]

131

THIS PAGE INTENTIONALLY LEFT BLANK

132

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Marine Corps Representative
 Naval Postgraduate School
 Monterey, California

4. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
 Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
 Camp Pendleton, California

133

	INTRODUCTION
	PURPOSE
	BACKGROUND
	RESEARCH QUESTIONS
	SCOPE
	METHODOLOGY
	Research Methodology
	Interoperability Analysis Methodology

	ORGANIZATION
	BENEFITS OF THE STUDY

	MARINE CORPS AUTOMATED TACTICAL COMMAND AND CONTROL
	WHAT IS COMMAND AND CONTROL (C2)?
	Nature of C2
	People
	Information
	Support
	What Makes Effective C2
	Command
	Control

	C2 AT THE STRATEGIC AND OPERATIONAL LEVELS OF WAR
	DoD Strategic and Operational Processes
	Systems

	FACTORS AFFECTING TACTICAL C2
	USMC Maneuver Warfare Doctrine
	Implications of Combined Arms Concepts for C2
	Effects of Weapons Technology on C2

	BENEFITS OF AUTOMATED C2 SYSTEMS
	USMC C2 SYSTEM ARCHITECTURES
	Marine Corps View of Systems Architecture
	Problems with the USMC’s Systems Architecture and
	Cultural Inertia
	USMC as System Buyer
	Stovepiped and Overlapping Development Efforts
	USMC Seen as a Bit Player Among Competing Interests
	Software Project Management Challenges

	CURRENT C2 DEVELOPMENT ENVIRONMENT
	Overview
	DISA
	ASD, AT&L (Interoperability)
	GIG COE
	JROC
	SPAWAR Charleston

	THE UNIFIED MODELING LANGUAGE
	INTRODUCTION
	Object Orientation
	Advantages of UML
	Why UML is Useful for this Project

	USE CASES
	Actors
	Classes

	COLLABORATIONS
	CONCLUSION

	THE INTELLIGENCE – OPERATIONS SERVER \(IOS\) S�
	HISTORY
	Introduction
	The Maritime Command and Control Environment
	Joint Maritime Command Information System (JMCIS)
	Tactical Combat Operations (TCO)
	Intelligence-Operations Server (IOS)

	OPERATIONAL REQUIREMENTS
	Selected User Requirements
	Actors
	Essential Use Cases
	COP Network
	Derived IOS Classes
	Interoperability Requirements

	IOS IMPEMENTATION ISSUES
	Software Development
	Support to the Fleet Marine Forces
	Future Capabilities

	THE ADVANCED FIELD ARTILLERY TACTICAL DATA SYSTEM (AFATDS)
	HISTORY
	The Gunnery Problem
	Field Artillery Digital Automatic Computer (FADAC)
	TACFIRE
	BCS/LTACFIRE/IFSAS
	AFATDS

	OPERATIONAL REQUIREMENTS
	Selected User Requirements
	Actors
	Essential Use Cases
	AFATDS Network
	Derived AFATDS Classes
	Use Case “Conduct Fire Mission” Sequence Diagram

	INTEROPERABILITY REQUIREMENTS
	Overview
	Interface Control Documents
	DII-COE Compliance Requirements

	AFATDS IMPLEMENTATION ISSUES
	The Master Unit List
	Current Capabilities

	INTEROPERABILITY REQUIREMENTS ANALYSIS
	INTRODUCTION
	LISI-IMM
	USER REQUIREMENTS
	Requirements
	Actors
	Provide COP
	Use Case Conduct Fire Mission

	THE CRITICAL INTEGRATION CHALLENGE
	The AFATDS MUL
	Friendly Firing Unit Versus Track
	Unit Identification
	COP Object Translation

	CURRENT INITIATIVES
	FIRE SUPPORT CLIENT
	PROXY SERVER
	TESTING
	FLEET SUPPORT CONTRACTORS
	VERSION CONTROL

	CONCLUSIONS
	GENERAL
	JOINT RECOMMENDATIONS
	MARINE CORPS RECOMMENDATIONS
	System Architecture Management
	MARCORSYSCOM
	Fleet Contractors
	MCTSSA

	RECOMMENDATIONS FOR NPS
	THE UML AS A MODELING TOOL
	AREAS FOR FURTHER RESEARCH

	LIST OF REFERENCES
	APPENDIX A. GLOSSARY
	APPENDIX B. EXAMPLE MARINE ORGANIZATION FOR COMBAT
	INITIAL DISTRIBUTION LIST

